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PREFACE TO 
THE RUSSIAN EDITION 

Mathematics, which originated in antiquity in the needs of daily life, 
has developed into an immense system of widely varied disciplines. Like 
the other sciences, it reflects the laws of the material world around us 
and serves as a powerful instrument for our knowledge and mastery of 
nature. But the high level of abstraction peculiar to mathematics means 
that its newer branches are relatively inaccessible to nonspecialists. This 
abstract character of mathematics gave birth even in antiquity to 
idealistic notions about its independence of the material world. 

In preparing the present volume, the authors have kept in mind the 
goal of acquainting a sufficiently wide circle of the Soviet intelligentsia 
with the various mathematical disciplines, their content and methods, 
the foundations on which they are based, and the paths along which 

they have developed. 
As a minimum of necessary mathematical knowledge on the part of 

the reader, we have assumed only secondary-school mathematics, but 
the volumes differ from one another with respect to the accessibility of 
the material contained in them. Readers wishing to acquaint themselves 
for the first time with the elements of higher mathematics may profitably 
read the first few chapters, but for a complete understanding of the 
subsequent parts it will be necessary to have made some study of cor¬ 
responding textbooks. The book as a whole will be understood in a 
fundamental way only by readers who already have some acquaintance 
with the applications of mathematical analysis; that is to say, with the 
differential and integral calculus. For such readers, namely teachers of 
mathematics and instructors in engineering and the natural sciences, it 
will be particularly important to read those chapters which introduce 
the newer branches of mathematics. 
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vi PREFACE TO THE RUSSIAN EDITION 

Naturally it has not been possible, within the limits of one book, to ex¬ 

haust all the riches of even the most fundamental results of mathematical 

research; a certain freedom in the choice of material has been inevitable 

here. But along general lines, the present book will give an idea of the 

present state of mathematics, its origins, and its probable future develop¬ 

ment. For this reason the book is also intended to some extent for persons 

already acquainted with most of the factual material in it. It may perhaps 

help to remove a certain narrowness of outlook occasionally to be 

found in some of our younger mathematicians. 

The separate chapters of the book are written by various authors, 

whose names are given in the Contents. But as a whole the book is the 

result of collaboration. Its general plan, the choice of material, the suc¬ 

cessive versions of individual chapters, were all submitted to general 

discussion, and improvements were made on the basis of a lively exchange 

of opinions. Mathematicians from several cities in the Soviet Union 

were given an opportunity, in the form of organized discussion, to make 

many valuable remarks concerning the original version of the text. Their 

opinions and suggestions were taken into account by the authors. 

The authors of some of the chapters also took a direct share in pre¬ 

paring the final version of other chapters: The introductory part of 

Chapter II was written essentially by B. N. Delone, while D. K. Faddeev 

played an active role in the preparation of Chapter IV and Chapter XX. 

A share in the work was also taken by several persons other than the 

authors of the individual chapters: $4 of Chapter XIV was written by 

L. V. Kantorovic, $6 of Chapter VI by O. A. Ladyzenskaja, §5 of 

Chapter 10 by A. G. Postnikov; work was done on the text of Chapter V 

by O. A. Oleinik and on Chapter XI by Ju. V. Prohorov. 

Certain sections of Chapters I, II,VII, and XVII were written by 

V. A. Zalgaller. The editing of the final text was done by V. A. Zalgaller 

and V. S. Videnskii with the cooperation of T. V. Rogozkinaja and 

A. P. Leonovaja. 

The greater part of the illustrations were prepared by E. P. Sen'kin. 

Moscow 
1956 Editorial Board 



FOREWORD BY THE 
EDITOR OF THE TRANSLATION 

Mathematics, in view of its abstractness, offers greater difficulty to the 

expositor than any other science. Yet its rapidly increasing role in modem 

life creates both a need and a desire for good exposition. 

In recent years many popular books about mathematics have appeared 

in the English language, and some of them have enjoyed an immense 

sale. But for the most part they have contained little serious mathematical 

instruction, and many of them have neglected the twentieth century, the 

undisputed "golden age” of mathematics. Although they are admirable 

in many other ways, they have not yet undertaken the ultimate task of 

mathematical exposition, namely the large-scale organization of modern 

mathematics in such a way that the reader is constantly delighted by the 

obvious economizing of his own time and effort. Anyone who reads 

through some of the chapters in the present book will realize how well 

this task has been carried out by the Soviet authors, in the systematic 

collaboration they have described in their preface. 

Such a book, written for “a wide circle of the intelligentsia,” must also 

discuss the general cultural importance of mathematics and its continuous 

development from the earliest beginnings of history down to the present 

day. To form an opinion of the book from this point of view the reader 

need only glance through the first chapter in Part 1 and the introduction 

to certain other chapters; for example, Analysis, or Analytic Geometry. 

In translating the passages on the history and cultural significance of 

mathematical ideas, the translators have naturally been aware of even 

greater difficulties than are usually associated with the translation of 

scientific texts. As organizer of the group, 1 express my profound grati¬ 

tude to the other two translators, Tamas Bartha and Kurt Hirsch, for 

their skillful cooperation. 
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FOREWORD viii 

The present translation, which was originally published by the Ameri¬ 

can Mathematical Society, will now enjoy a more general distribution in 

its new format. In thus making the book more widely available the 

Society has been influenced by various expressions of opinion from 

American mathematicians. For example, . . the book will contribute 

materially to a better understanding by the public of what mathematicians 

are up to. . . . It will be useful to many mathematicians, physicists and 

chemists, as well as to laymen. . . . Whether a physicist wishes to know 

what a Lie algebra is and how it is related to a Lie group, or an under¬ 

graduate would like to begin the study of homology, or a crystallographer 

is interested in Fedorov groups, or an engineer in probability, or any 

scientist in computing machines, he will find here a connected, lucid 

account.” 

In its first edition this translation has been widely read by mathemati¬ 

cians and students of mathematics. We now look forward to its wider 

usefulness in the general English-speaking world. 

August, 1964 

S. H. Gould 

Editor of Translations 

American Mathematical Society 

Providence, Rhode Island 
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CHAPTER VI 
PARTIAL 

DIFFERENTIAL EQUATIONS 

§1. Introduction 

In the study of the phenomena of nature, partial differential 

equations are encountered just as often as ordinary ones. As a rule this 

happens in cases where an event is described by a function of several 

variables. From the study of nature there arose that class of partial dif¬ 

ferential equations that is at the present time the most thoroughly investi¬ 

gated and probably the most important in the general structure of human 

knowledge, namely the equations of mathematical physics. 

Let us first consider oscillations in any kind of medium. In such oscil¬ 

lations every point of the medium, occupying in equilibrium the position 

(x, y, z), will at time t be displaced along a vector u(x, y, z, t), depending 

on the initial position of the point (x, y, z) and on the time t. In this case 

the process in question will be described by a vector field. But it is easy 

to see that knowledge of this vector field, namely the field of displacements 

of points of the medium, is not sufficient in itself for a full description of 

the oscillation. It is also necessary to know, for example, the density 

p(x, y, z, t) at each point of the medium, the temperature T(x, y, z, t), 
and the internal stress, i.e., the forces exerted on an arbitrarily chosen 

volume of the body by the entire remaining part of it. 

Physical events and processes occuring in space and time always consist 

of the changes, during the passage of time, of certain physical magnitudes 

related to the points of the space. As we saw in Chapter II these quantities 

can be described by functions with four independent variables, x, y, z, 
and t, where x, y, and z are the coordinates of a point of the space, and 

and i is the time. 

3 



4 VI. PARTIAL DIFFERENTIAL EQUATIONS 

Physical quantities may be of different kinds. Some are completely 

characterized by their numerical values, e.g., temperature, density, and 

the like, and are called scalars. Others have direction and are therefore 

vector quantities: velocity, acceleration, the strength of an electric field, 

etc. Vector quantities may be expressed not only by the length of the 

vector and its direction but also by its "components” if we decompose 

it into the sum of three mutually perpendicular vectors, for example 

parallel to the coordinate axes. 

In mathematical physics a scalar quantity or a scalar field is presented 

by one function of four independent variables, whereas a vector quantity 

defined on the whole space or, as it is called, a vector field is described by 

three functions of these variables. We can write such a quantity either in 

the form 

u(x, y, z, /), 

where the bold face type indicates the u is a vector, or in the form of three 

functions 

uz(x, y, z, /), u,(x, y, z, /), ua(x, y, z, r), 

where ux , uy, and uz denote the projections of the vector on the coordinate 

axes. 

In addition to vector and scalar quantities, still more complicated entities 

occur in physics, for example the state of stress of a body at a given point. 

Such quantities are called tensors; after a fixed choice of coordinate axes, 

they may be characterized everywhere by a set of functions of the same 

four independent variables. 

In this manner, the description of widely different kinds of physical 

phenomena is usually given by means of several functions of several 

variables. Of course, such a description cannot be absolutely exact. 

For example, when we describe the density of a medium by means of 

one function of our independent variables, we ignore the fact that at a 

given point we cannot have any density whatsoever. The bodies we are 

investigating have a molecular structure, and the molecules are not 

contiguous but occur at finite distances from one another. The distances 

between molecules are for the most part considerably larger than the 

dimensions of the molecules themselves. Thus the density in question is 

the ratio of the mass contained in some small, but not extremely small, 

volume to this volume itself. The density at a point we usually think of as 

the limit of such ratios for decreasing volumes. A still greater simplification 

and idealization is introduced in the concept of the temperature of a 

medium. The heat in a body is due to the random motion of its molecules. 
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The energy of the molecules differs, but if we consider a volume containing 

a large collection of molecules, then the average energy of their random 

motions will define what is called temperature. 

Similarly, when we speak of the pressure of a gas or a liquid on the wall 

of a container, we should not think of the pressure as though a particle 

of the liquid or gas were actually pressing against the wall of the container. 

In fact, these particles, in their random motion, hit the wall of the container 

and bounce off it. So what we describe as pressure against the wall is 

actually made up of a very large number of impulses received by a section 

of the wall that is small from an everyday point of view but extremely 

large in comparison with the distances between the molecules of the liquid 

or gas. It would be easy to give dozens of examples of a similar nature. 

The majority of the quantities studied in physics have exactly the same 

character. Mathematical physics deals with idealized quantities, abstracting 

them from the concrete properties of the corresponding physical entities 

and considering only the average values of these quantities. 

Such an idealization may appear somewhat coarse but, as we will see, 

it is very useful, since it enables us to make an excellent analysis of many 

complicated matters, in which we consider only the essential elements and 

omit those features which are secondary from our point of view. 

The object of mathematical physics is to study the relations existing 

among these idealized elements, these relations being described by sets of 

functions of several independent variables. 

§2. The Simplest Equations of Mathematical Physics 

The elementary connections and relations among physical quantities are 

expressed by the laws of mechanics and physics. Although these relations 

are extremely varied in character, they give rise to more complicated ones, 

which are derived from them by mathematical argument and are even 

more varied. The laws of mechanics and physics may be written in mathe¬ 

matical language in the form of partial differential equations, or perhaps 

integral equations, relating unknown functions to one another. To 

understand what is meant here, let us consider some examples of the 

equations of mathematical physics. 

Equations of conservation of mass and of heat energy. Let us express 

in mathematical form the basic physical laws governing the motions of a 

medium. 

1. First of all we express the law of conservation of the matter contained 

in any volume 12 which we mentally mark off in a space and keep fixed. 
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For this purpose we must calculate the mass of the matter contained in 

this volume. The mass Mn(t) is expressed by the integral 

Mail) = /// M*. y< 2. 0 dx dy dz. 
a 

This mass will not, of course, be constant; in an oscillatory process the 

density at each point will be changing in view of the fact that the particles 

of matter in their oscillations will at one time enter this volume and at 

another leave it. The rate of change of the mass can be found by differentia¬ 

tion with respect to time and is given by the integral 

tMJJW*- 
a 

This rate of change of the mass contained in the volume may also be 

calculated in another way. We may express the amount of matter which 

passes through the surface S, bounding our volume SI, at each second of 

time, where the matter leaving Si must be taken with a minus sign. To this 

end we consider an element ds of the surface S sufficiently small that it 

may be assumed to be plane and have the same displacement for all its 

points. We will follow the displacement of points on this segment of the 

surface during the interval of time from 

l to t + dt. First of all we compute the vector 

du 
V = T,' 

which represents the velocity of each particle. 

In the time dt the particles on ds move along 

the vector v dt, and take up a position dsx, 
while the position ds will now be occupied by 

the particles which were formerly at the 

position dst (figure 1). So during this time 

the column of matter leaving the volume SI 
will be that which was earlier contained 

between dst and dst. The altitude of this 

small column is equal to v dt cos (n, v), where 

n denotes the exterior normal to the surface; 

the volume of the small column will thus be 

equal to 

v cos (n, v) ds dt, 
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and the mass equal to 

pv cos (n, v) ds dt. 

Adding together all these small pieces, we get for the amount of matter 

leaving the volume during the time dt the expression 

| | pv cos (n, v) ds dt. 
's 

At those points where the velocity is directed toward the interior of Si the 

sign of the cosine will be negative, which means that in this integral the 

matter entering Si is taken with a minus sign. The product of the velocity 

of motion of the medium with its density is called its flux. The flux vector 

of the mass is q = pv. 
In order to find the rate of flow of matter out of the volume Si it is 

sufficient to divide this expression by dt, so that for the rate of flow we have 

|| pvn ds = || qn ds, 
, s s where 

v„ = v cos («, v), q„ = q cos (n, q). 

The normal component of the vector^ may be replaced by its expression 

in terms of the components of the vectors v and n along the coordinate 

axes. From analytic geometry we know that 

v„ = v cos (n, v) = vx cos («, x) -1- v, cos (n, y) + v, cos (n, z), 

hence we can rewrite the expression for the rate of flow in the form 

JJ* * cos (it, x) + Vy cos (n, y) + v, cos (n, z)) ds. 
s 

From the law of conservation of matter, these two methods of computing 

the change in the amount of matter must give the same result, since all 

change in the mass included in Si can occur only as a result of the entering 

or leaving of mass through the surface S. 

Hence, equating the rate of change of the amount of matter contained 

in the volume with the rate of flow of matter into the volume, we get 

fff^dxdydz 
n 

= - II [pvx cos (n, x) + pvy cos (/», y>) -f pv, cos (n, z)] ds 
s 

= — |J [qT cos («, x) + <7, cos (n, y) + q, cos (n, z)] ds. 
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This integral relation, as we have said, is true for any volume Q. It is called 

“the equation of continuity.” 

The integral occuring on the right side of the last equation may be 

transformed into a volume integral by using Ostrogradskil’s formula. 

This formula, derived in Chapter II gives 

JJ (Pl’x cos (n, x) + piy cos (/i, y) + pvt cos (n, z)) ds 

Hence it follows that 

m 
So we get the following result; the integral of the function 

dp djpv,) d(pvy) d(pv,) dp dq, dq, dq, 
dt^dx'dy dz dt ^ dx ^ dy + dz 

over any volume Q is equal to zero. But this is possible only if the function 

is identically zero. We thus obtain the equation of continuity in differential 

form 
dp . d(pvx) d(pvy) d(pv,) 

fr + dx + 
dy 

+ dz 
= 0. (1) 

Equation (1) is a typical example of the formulation of a physical law in 

the language of partial differential equations. 

2. Let us consider another such problem, namely the problem of heat 

conduction. 

In any medium whose particles are in motion on account of heat, the 

heat flows from some points to others. This flow of heat will occur through 

every element of surface ds lying in the given medium. It can be shown that 

the process may be described numerically by a single vector quantity, the 

heat-conduction vector, which we denote by t. Then the amount of heat 

flowing per second through an element of area ds will be expressed by 

t„ ds, in the same way as q„ ds earlier expressed the amount of material 

passing per second through an area ds. In place of the flux of liquid 

q = pv we have the heat flow vector t. 

In the same way as we obtained the equation of continuity, which for 

the motion of a liquid expresses the law of conservation of mass, we may 

obtain a new partial differential equation expressing the law of conserva¬ 

tion of energy, as follows. 
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The volume density of heat energy Q at a given point may be expressed 

by the formula 

Q = CT, 

where C is the heat capacity and T is the temperature. 

Here it is easy to establish the equation 

07 drx dr„ drt 
dt dx ^ dy ^ dz 

= 0. (2) 

The derivation of this equation is identical with the derivation of the 

equation of continuity, if we replace “density” by “density of heat energy” 

and flow of mass by flow of heat. Here we have assumed that the heat 

energy in the medium never increases. But if there is a source of heat 

present in the medium, equation (2) for the balance of heat energy must 

be modified. If q is the productivity density of the source, that is the amount 

of heat energy produced per unit of volume in one second, then the 

equation of conservation of heat energy has the following more compli¬ 

cated form: 

gT« , drv , gT, = 

dx dy dz f- (3) 

3. Still another equation of the same type as the equation of continuity 

may be derived by differentiating equation (1) with respect to time. Let us 

do this for the equation of small oscillations of a gas near a position of 

equilibrium. We will assume that for such oscillations changes of the 

density are not great and the quantities dp/dx, dp/dy, dp/dz, and dp/dt 
are sufficiently small that their products with vx ,vy, and v, may be 

ignored. Then 

dp 
dt + 

dVy_ 

dy + 

Differentiating this equation with respect to time and ignoring the products 

of dp/dt with dvjdx, dvjdy, and dvjdz, we obtain 

Equation of motion. 

1. An important example of the expression of a physical law by a 

differential equation occurs in the equations of equilibrium or of motion 

of a medium. Let the medium consist of material particles, moving with 
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various velocities. As in the first example, we mentally mark off in space a 

volume Q, bounded by the surface S and filled with particles of matter of 

the medium, and write Newton’s third law for the particles in this volume. 

This law states that for every motion of the medium the rate of change of 

momentum, summed up for all particles, in the volume is equal to the sum 

of all the forces acting on the volume. The momentum, as is known from 

mechanics, is represented by the vector quantity 

P = pvdQ' 
a 

The particles occupying in small volume dQ with density p will, after 

lime At, fill a new volume dQ' with density p, although the mass will be 

unchanged 

p' dQ' = p dQ. 

If velocity v changes during this time to a new value v', i.e., by the 

amount Av = v' — v, the corresponding change of momentum will be 

p'v' dQ' — pv dQ = pv' dQ — pv dQ = p Av dQ, 

or in the unit of time: 

P^dQ * PjtdQ. 

Adding over all particles in the volume Q, we find that the rate of 

change of momentum is equal to 

or, in other words 

ana 

(Here the derivatives dvjdt, dvjdt, and dv,/dt denote the rate of change 

of the components of v not at a given point of the space but for a given 

particle. This is what is meant by the notation d/dt instead of d/dt. As is 

well known, d/dt = d/dt + vjd/dx) + v,(d/dy) + vz(d/dz).) 
The forces acting on the volume may be of two kinds: volume forces 

acting on every particle of the body, and surface forces or stresses on the 

surface S bounding the volume. The former are long-range forces, while 

the latter are short-range. 

To illustrate these remarks, let us assume that the medium under 
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consideration is a fluid. The surface forces acting on an element of the 

surface ds will in this case have the value p ds, where p is the pressure on 

the fluid, and will be exerted in a direction opposite to that of the exterior 

normal. 

If we denote the unit vector in the direction of the normal to the surface 

5 by it, then the forces acting on the section ds will be equal to 

—pit ds. 

If we let F denote the vector of the external forces acting on a unit of 

volume, our equation takes the form 

iSS^-ISSF‘lo-SSp"‘b 
a os 

This is the equation of motion in integral form. Like the equation of 

continuity, this equation also may be transformed into differential form. 

We obtain the system: 

A ,^_r n±y .ty-r F 

p dt + dx Fz,f> dt + dy F,,p di + dz ' Fz' 
(5) 

This system is the differential form of Newton’s third law. 

2. Another characteristic example of the application of the laws of 

mechanics in differential form is the equation of a vibrating string. A string 

is a long, very slender body of elastic material that is flexible because of 

its extreme thinness, and is usually tightly stretched. If we imagine the 

string divided at any point x into two parts, then on each of the parts 

there is exerted a force equal to the tension in the direction of the tangent 

to the curve of the string. 

Let us examine a short segment of the string. We will denote by u(x, t) 
the displacement of a point of the string from its position of equilibrium. 

We assume that the oscillation of the string occurs in one plane and consists 

of displacements perpendicular 

to the axis Ox, and we represent 

the displacement u(x, t) graphi¬ 

cally at some instant of time 

(figure 2). We will investigate 

the behavior of the segment of 

the string between the points 

x, and x2. At these points there 

are two forces acting, which are 

equal to the tension T in the 

direction of the corresponding tangent to u(x, t). 
Fig. 2. 
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If the segment is curved, the resolvent of these two forces will not be 

equal to zero. This resolvent, from the laws of mechanics, must be equal 

to the rate of change of momentum of the segment. 

Let the mass contained in each centimeter of length of the string be 

equal to p. Then the rate of change of momentum will be 

P 
d*u 
dt* 

dx. 

If the angle between the tangent to the string and the axis Ox is denoted 

by <f>, we will have 

/•** d“U 
T sin <f>2-T sin <£, = J p dx. 

This is the usual equation expressing the third law of mechanics in integral 

form. It is easy to transform it into differential form. We have obviously 

d*u 
p dt* 

ftiTsin*). 

From well-known theorems of differential calculus, it is easy to relate 

Tsin <f> to the unknown function u. We get 

. Gli . , UXII 

tan <i> = — , sin 6 = —,- == 
dx VI + tan* <f> Vl + (du/dx)* 

and under the assumption that (du/dx)* is small, we have 

Then 

S,n<^ * dx' 

_ d*u d*u 
T dx* ' p dt*' 

(6) 

This last equation is the equation of the vibrating string in differential 

form. 

Basic forms of equations of mathematical physics. As mentioned 

previously, the various partial differential equations describing physical 

phenomena usually form a system of equations in several unknown 

variables. But in the great majority of cases it is possible to replace this 

system by one equation, as may easily be shown by very simple examples. 

For instance, let us turn to the equations of motion considered in the 
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preceding paragraph. It is required to solve these equations along with 

the equation of continuity. The actual methods of solution we will consider 

somewhat later. 

I. We begin with the equation for steady flow of an idealized fluid. 

All possible motions of a fluid can be divided into rotational and 

irrotational, the latter also being called potential. Although irrotational 

motions are only special cases of motion and, generally speaking, the 

motion of a liquid or a gas is always more or less rotational, nevertheless 

experience shows that in many cases the motion is irrotational to a high 

degree of exactness. Moreover, it may be shown from theoretical con¬ 

siderations that in a fluid with viscosity equal to zero a motion which is 

initially irrotational will remain so. 

For a potential motion of a fluid, there exists a scalar function 

U(x, y, z, r), called the velocity potential, such that the velocity vector v 

is expressed in terms of this functions by the formulas 

bU bU bU 

r* ~ bx ' l'v - by ’ l'M ~ bz ■ 

In all the cases we have studied up to now, we have had to deal with 

systems of four equations in four unknown functions or, in other words, 

with one scalar and one vector equation, containing one unknown scalar 

function and one unknown vector field. Usually these equations may be 

combined into one equation with one unknown function, but this equation 

will be of the second order. Let us do this, beginning with the simplest 

For potential motion of an incompressible fluid, for which bp/bt = 0, 

we have two systems of equations: the equation of continuity 

and the equations of potential motion 

f* 

bU bU bU 

bx ' V• ~ by' V‘~ bz ■ 

Substituting in the first equation the values of the velocity as given in the 

second we have 
b*U b*U b*U 

bxi + by* + bz* 
(7) 

2. The vector field of “heat flow” can also be expressed, by means of 

differential equations, in terms of one scalar quantity, the temperature. 



14 VI. PARTIAL DIFFERENTIAL EQUATIONS 

It is well known that heat “flows” in the direction from a hot body to a 

cold one. Thus the vector of the flow of heat lies in the direction opposite 

to that of the so-called temperature-gradient vector. It is also natural to 

assume, as.is justified by experience, that to a first approximation the 

length of this vector is directly proportional to the temperature gradient. 

The components of the temperature gradient are 

dT dT dT 

dx ’ by ’ dz ' 

Taking the coefficient of proportionality to be k, we get three equations 

These are to be solved, together with the equation for the conservation of 

heat energy 
dT 3tx gr„ dr, 

dt dx by dz = <7- 

Replacing t, . r, , and t, by their values in terms of T, we get 

C ■'S- = ki 
dt 

d*T 

\ dx1 
d*T , a*r i 

W + 15*7 + q- (8) 

3. Finally, for small vibrations in a gaseous medium, for example the 

vibrations of sound, the equation 

d2p d / dvx \ d / dr, \ , c I dv, \ . 

dt* pdx\ dt ^ p dv ( dt ) + pdz\ dt ) _ ° 

and the equations of dynamics (5), give 

dvx 

~di 

dp _ di\ dp dv, , ty 
+ Tx - Fx ’ p + Tv - F* ’ p IF + h~, - F‘'' dt ' dy dt dz 

and, assuming the absence of external forces (Fx = F, = F, = 0) we get 

(to obtain this equation it is sufficient to substitute the expression for the 

accelerations into the equation of continuity and to eliminate the density 

p by using the Boyle-Mariotte law; p — a*p). 

Equations (7), (8), and (9) are typical for many problems of mathe- 
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matical physics in addition to the ones considered here. The fact that they 

have been investigated in detail enables us to gain an understanding of 

many physical situations. 

§3. Initial-Value and Boundary-Value Problems; 

Uniqueness of a Solution 

With partial differential equations as with ordinary ones, it is the case, 

with rare exceptions, that every equation has infinitely many particular 

solutions. Thus to solve a concrete physical problem, i.e., to find an 

unknown function satisfying some equation, we must know how to choose 

the required solution from an infinite set of solutions. For this purpose 

it is usually necessary to know not only the equation itself but a certain 

number of supplementary conditions. As we saw previously, partial 

differential equations are the expression of elementary laws of mechanics 

or physics, referring to small particles situated in a medium. But it is not 

enough to know only the laws of mechanics, if we wish to predict the 

course of some process. For example, to predict the motion of the heavenly 

bodies, as is done in astronomy, we must know not only the general for¬ 

mulation of Newton’s laws but also, assuming that the masses of these 

bodies are known, we must know the initial state of the system, i.e., the 

position of the bodies and their velocities at some initial instant of time. 

Supplementary conditions of this kind are always encountered in solving 

the problems of mathematical physics. 

Thus, the problems of mathematical physics consist of finding solutions 

of partial differential equations that satisfy certain supplementary condi¬ 

tions. 

The equations (7), (8), (9) differ in structure among themselves. 

Correspondingly different are the physical problems that may be solved 

by means of these equations. 

The Laplace and Poisson equations; harmonic functions and uniqueness 

of solution of boundary-value problems for them. Let us analyze these 

problems a little more in detail. We begin with the Laplace and Poisson 

equations. The Poisson equation is* 

Au = —4np, 

where p is usually the density. In particular, p may vanish. For p = 0 

we get the Laplace equation 
Au = 0. 

* The symbol Au is an abbreviation for the expression iPu/dx* + iPu/dy* + tPu/dz1 

and is called the Laptacian of the function u. 



16 VI. PARTIAL DIFFERENTIAL EQUATIONS 

It is not difficult to see that the difference between any two particular 

solutions h, and w2 of the Poisson equation is a function satisfying the 

Laplace equation, or in other words is a harmonic function. The entire 

manifold of solutions of the Poisson equation is thus reduced to the mani¬ 

fold of harmonic functions. 

If we have been able to construct even one particular solution u0 of the 

Poisson equation, and if we define a new unknown function w by 

u = u0 + w, 

we see that w must satisfy the Laplace equation; and in exactly the same 

way, we determine the corresponding boundary conditions for w. Thus it 

is particularly important to investigate boundary value problems for the 

Laplace equation. 

As is most often the case with mathematical problems, the proper 

statement of the problem for an equation of mathematical physics is 

immediately suggested by the practical situation. The supplementary 

conditions arising in the solution of the Laplace equation come from the 

physical statement of the problem. 

Let us consider, for example, the establishment of a steady temperature 

in a medium, i.e., the propagation of heat in a medium where the sources 

of heat are constant and are situated either inside or outside the medium. 

Under these conditions, with the passage of time the temperature attained 

at any point of the medium will be independent of the time. Thus to find 

the temperature Tat each point, we must find that solution of the equation 

where q is the density of the sources of heat distribution, which is indepen¬ 

dent of t. We get 

AT+ <7 = 0. 

Thus the temperature in our medium satisfies the Poisson equation. If 

the density of heat sources q is zero, then the Poisson equation becomes 

the Laplace equation. 

In order to find the temperature inside the medium, it is necessary, 

from simple physical considerations, to know also what happens on the 

boundary of the medium. 

Obviously the physical laws previously considered for interior points 

of a body call for quite another formulation at boundary points. 

In the problem of establishing the steady-state temperature, we can 

prescribe either the distribution of temperature on the boundary, or the 
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rate of flow of heat through a unit area of the surface, or finally, a law 

connecting the temperature with the flow of heat. 

Considering the temperature in a volume 12, bounded by the surface S, 

we can write these three conditions as: 

T\s = <KQl (10) 

or 

oo) 

or finally, in the most general case 

dT 

a dn + PT\s=x(Q\ (io-) 

where Q denotes an arbitrary point of the surface S. Conditions of the 

form (10) are called boundary conditions. Investigation of the Laplace or 

Poisson equation under boundary conditions of one of these types will 

show that as a rule the solution is uniquely determined. 

Thus, in our search for a solution of the Laplace or Poisson equation it 

will usually be necessary and sufficient to be given one arbitrary function 

on the boundary of the domain.* Let us examine the Laplace equation a 

little more in detail. We will show that a harmonic function u, i.e., a 

function satisfying the Laplace equation, is completely determined if we 

know its values on the boundary of the domain. 

First of all we establish the fact that a harmonic function cannot take 

on values inside the domain that are larger than the largest value on the 

boundary. More precisely, we show that the absolute maximum, as well 

as the absolute minimum of a harmonic function are attained on the 

boundary of the domain. 

From this it will follow at once that if a harmonic function has a 

constant value on the boundary of a domain Q, then in the interior of this 

domain it will also be equal to this constant. For if the maximum and 

minimum value of a function are both the same constant, then the function 

will be everywhere equal to this constant. 

We now establish the fact that the absolute maximum and minimum of 

a harmonic function cannot occur inside the domain. First of all, we note 

that if the Laplacian Au of the function u(x, y, z) is positive for the whole 

domain, then this function cannot have a maximum inside the domain, 

and if it is negative, then the function cannot have a minimum inside the 

* The words “arbitrary function" here and in what follows mean that no special 
conditions, other than certain requirements of regularity, are imposed on the functions. 
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domain. For at a point where the function u attains its maximum it must 
have a maximum as a function of each variable separately for fixed values 
of the other variables. Thus it follows that every partial derivative of 
second order with respect to each variable must be nonpositive. This 
means that their sum will be nonpositive, whereas the Laplacian is positive, 
which is impossible. Similarly it may be shown that if the function has a 
minimum at some interior point, then its Laplacian cannot be negative 
at this point. This means that if the Laplacian is negative everywhere in 
the domain, then the function cannot have a minimum in this domain. 

If a function is harmonic, it may always be changed by an arbitrarily 
small amount in such a way that it will have a positive or negative 
Laplacian; to this end it is sufficient to add to it the quantity 

± V* = ± ifix* + y* + z*), 

where 77 is an arbitrarily small constant: 
The addition of a sufficiently small quantity cannot change the property 

that the function has an absolute maximum or absolute minimum with 
the domain. If a harmonic function were to have a maximum inside the 
domain, then by adding + ijr* to it, we would get a function with a positive 
Laplacian which, as was shown above, could not have a maximum inside 
the domain. This means that a harmonic function cannot have an absolute 
maximum inside the domain. Similarly, it can be shown that a harmonic 
function cannot have an absolute minimum inside the domain. 

This theorem has an important corollary. Two harmonic functions that 
agree on the boundary of a domain must agree everywhere inside the 
domain. For then the difference of these functions (which itself will be a 
harmonic function) vanishes on the boundary of the domain and thus is 
everywhere equal to zero in the interior of the domain. 

So we see that the values of a harmonic function on the boundary 
completely determine the function. It may be shown (although we cannot 
give the details here) that for arbitrarily preassigned values on the 
boundary one can always find a harmonic function that assumes these 
values. 

It is somewhat more complicated to prove that the steady-state 
temperature established in a body is completely determined, if we know 
the rate of flow of heat through each element of the surface of the body 
or a law connecting the flow of heat with the temperature. We will return 
to some aspects of this question when we discuss methods of solving 
the problems of mathematical physics. 

The boundary-value problem for the heat equation. A completely dif¬ 
ferent situation occurs in the problem of the heat equation in the non- 
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stationary case. It is physically clear that the values of the temperature on 

the boundary or of the rate of the flow of heat through the boundary are 

not sufficient in themselves to define a unique solution of the problem. 

But if in addition we know the temperature distribution at some initial 

instant of time, then the problem is uniquely determined. Thus to deter¬ 

mine the solution of the equation of heat conduction (8) it is usually 

necessary and sufficient to assign one arbitrary function T0(x, y, z) 

describing the initial distribution of temperature and also one arbitrary 

function on the boundary of the domain. As before, this may be either 

the temperature on the surface of the body, or the rate of heat flow 

through each element of the surface, or a law connecting the flow of 

heat with the temperature. 

In this manner, the problem may be stated as follows. We seek a solution 

of equation (8) under the condition 

T\i-o = T0(x,y, z) (11) 

and one of three following conditions 

T\s = <HQ), (12) 

dT 
drt = >KQ), 

<x 
ar 
dn + PT\s=x(Q), . 

s 

(12') 

(12') 

where Q is any point of the surface 5. 

Condition (11) is called an initial condition, while conditions (12) are 

boundary conditions. 

We will not prove in detail that every such problem has a unique 

solution but will establish this fact only for the first of these problems; 

moreover, we will consider only the case where there are no heat sources 

in the interior of the medium. We show that the equation 

under the conditions 

a* dt 

7" I i-o = T^x, y, z), 

t\s = <KQ) 

can have only one solution. 
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The proof of this statement is very similar to the previous proof for the 

uniqueness of the solution of the Laplace equation. We show first of all 

that if 

then the function T, as a function of four variables, x, y, z, and 

f(0 t t0), assumes its minimum either on the boundary of the domain 

SI or else inside SI, but in the latter case necessarily at the initial instant 

of time, t = 0. 

For if not, then the minimum would be attained at some interior point. 

At this point all the first derivatives, including dT/dt, will then be equal 

to zero, and if this minimum were to occur for t = t0 , then dT/dt would 

be nonpositive. Also, at this point all second derivatives with respect to 

the variables x, y, and z will be nonnegative. Consequently AT — (1 /a*) 

(dT/dt) will be nonnegative, which in our case is impossible. 

In exactly the same way we can establish that if AT — (1/a*) (dT/dt) > 0, 

then inside SI for 0 < t < /„ there cannot exist a maximum for the 

function T. 
Finally, if AT — (1/a*) (dT/dt) = 0, then inside SI for 0 < t < tk the 

function Tcannot attain its absolute maximum nor its absolute minimum, 

since if the function T were to have, for example, such an absolute mini¬ 

mum, then by adding to it the term r/(t — t„) and considering the function 

T, = T + i)(t — t0), we would not destroy the absolute maximum if 

i] were sufficiently small, and then ATX — (1/a*) (dTjdt) would be negative, 

which is impossible. 

In the same way we can also show the absence of an absolute maximum 

for T in the domain under consideration. 

However, an absolute maximum, as well as an absolute minimum of 

temperature may occur either at the initial instant t = 0 or on the 

boundary S of the medium. If T = 0 both at the initial instant and on the 

boundary, then we have the identity T = 0 throughout the interior of the 

domain for all t ^ t0. If any two temperature distributions 7", and Tt 
have identical values for / = 0 and on the boundary then their difference 

T1 — Tt = T will satisfy the heat equation and will vanish for t — 0 

and on the boundary. This means that T, — Tt will be everywhere equal 

to zero, so that the two temperature distributions 7", and Tt will be 

everywhere identical. 

In the investigation given later of methods of solving the equations of 

mathematical physics we will see that the value of T for / = 0 and the 

right side of one of the equations (12) may be given arbitrarily, i.e., that 

the solution of such a problem will exist. 
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The energy of oscillations and the boundary-value problem for the 

equation of oscillation. We now consider the conditions under which the 

third of the basic differential equations has a unique solution, namely 

equation (9). 

For simplicity we will consider the equation for the vibrating string 

(Pu/dx* = (l/a*) (dfy/Sr4), which is very similar to equation (9), differing 

from it only in the number of space variables. On the right side of this 

equation there is the quantity dhi/dt* expressing the acceleration of an 

arbitrary point of the string. The motion of any mechanical system for 

which the forces, and consequently the accelerations, are expressed by 

the coordinates of the moving bodies, is completely determined if we are 

given the initial positions and velocities of all the points of the system. 

Thus for the equation of the vibrating string, it is natural to assign the 

positions and velocities of all points at the initial instant. 

u I f—o = "oW 
du 

dt i-o 
u,(x). 

But as was pointed out earlier, at the ends of the string the formulas 

expressing the laws of mechanics for interior points cease to apply. Thus 

at both ends we must assign supplementary conditions. If, for example, 

the string is fixed in a position of equilibrium at both ends, then we will 

have 

«l*-o = «l«-» = 0. 

These conditions can sometimes be replaced by more general ones, but a 

change of this sort is not of basic importance. 

The problem of finding the necessary solutions of equation (9) is analo¬ 

gous. In order that such a solution be well defined, it is customary to 

assign the conditions 

Pit-o = 4>o(x> y, *). 

5? , o = (l3) 

and also one of the “boundary conditions” 

p\s = <HQ)> (14) 

t\rm- (14,) 
a%\s+pp^=x{Q)* (i4'} 

* If the right-hand sides in conditions (13) and (14) are equal to zero, such conditions 
are called “homogeneous.” 
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The difference from the preceding case is simply that instead of the one 

initial condition in equation (11) we have the two conditions (13). 

Equations (14) obviously express the physical laws for the particles on 

the boundary of the volume in question. 

The proof that in the general case the conditions (13) together with an 

arbitrary one of the conditions (14) uniquely define a solution of the 

problem will be omitted. We will show only that the solution can be 

unique for one of the conditions in (14). 

Let it be known that a function u satisfies the equation 

d2u _ 1 d*u 
lx* ~ tfJi*' 

with initial conditions 

l.-o - 0, dt = 0 
(-0 

and boundary condition 

— 

dn s 
= 0. 

(It would be just as easy to discuss the case in which u |s = 0.) 

We will show that under these conditions the function u must be 

identically zero. 

To prove this property it will not be sufficient to use the arguments 

introduced earlier to establish the uniqueness of the solution of the first 

two problems. But here we may make use of the physical interpretation. 

We will need just one physical law, the “law of conservation of energy.” 

We restrict ourselves again for simplicity to the vibrating string, the 

displacement of whose points u(x, t) satisfies the equation 

_ d*u 
T dx* p dt* • 

The kinetic energy of each particle of the string oscillating from x to x + dx 
is expressed in the form 

\ 
2 

Along with its kinetic energy, the string in its displaced position also 

possesses potential energy created by its increase of length in comparison 

with the straight-line position. Let us compute this potential energy. We 

concern ourselves with an element of the string between the points x and 
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x + dx. This element has an inclined position with respect to the axis Ox, 
such that its length is approximately equal to 

so its elongation is 

Multiplying this elongation by the tension T, we find the potential energy 

of the elongated element of the string 

The total energy of the string of length / is obtained by summing the 

kinetic and potential energies over all of the points of the string. We get 

If the forces acting on the end of the string do no work, in particular if 

the ends of the string are fixed, then the total energy of the string must be 

constant. 

E = const. 

Our expression for the law of conservation of energy is a mathematical 

corollary of the basic equations of mechanics and may be derived from 

them. Since we have already written the laws of motion in the form of 

the differential equation of the vibrating string with conditions on the 

ends, we can give the following mathematical proof of the law of conserva¬ 

tion of energy in this case. If we differentiate E with respect to time, we 

have, from basic general rules, 

dE c1 /-du <Pu Su Siu\ , 
dt ~ )0\T Si dxdt +p dt st*)dx' 

Using the wave equation (6) and replacing pidhj/SP) by 7X8*u/8x*)t we 

get dEjdt in the form 

dE 
dt 

Su S2u 
dx Sx St 

Su S*u i 

Si Sxt\ 

T- — 
' Sxli 

T— — 
Sx St 1 X-i l*-0 
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If (du/dx) !z_0 or m !*_„ vanishes, and also (du/dx)\x., or uvanishes. 

then 

which shows that E is constant. 

The wave equation (9) may be treated in exactly the same way to prove 

that the law of conservation of energy holds here also. If p satisfies equation 

(9) and the condition 

P Is = 0 or = 0, 

then the quantity 

will not depend on t. 

If, at the initial instant of time, the total energy of the oscillations is 

equal to zero, then it will always remain equal to zero, and this is possible 

only in the case that no motion occurs. If the problem of integrating the 

wave equation with initial and boundary conditions had two solutions 

Pi and pt, then v = px — pt would be a solution of the wave equation 

satisfying the conditions with zero on the right-hand side, i.e., homoge¬ 

neous conditions. 

In this case, when we calculated the “energy” of such an oscillation, 

described by the function v, we would discover that the energy E(v) is 

equal to zero at the initial instant of time. This means that it is always 

equal to zero and thus that the function v is identically equal to zero, so 

that the two solutions px and pt are identical. Thus the solution of the 

problem is unique. 

In this way we have convinced ourselves that all three problems are 

correctly posed. 

Incidentally, we have been able to discover some very simple properties 

of the solutions of these equations. For example, solutions of the Laplace 

equation have the following maximum property: Functions satisfying this 

equation have their largest and smallest values on the boundaries of their 

domains of definition. 

Functions describing the distribution of heat in a medium have a 

maximum property of a different form. Every maximum or minimum of 

temperature occuring at any point gradually disperses and decreases with 

time. The temperature at any point can rise or fall only if it is lower or 

higher than at nearby points. The temperature is smoothed out with the 
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passage of time. All unevennesses in it are leveled out by the passage of 

heat from hot places to cold ones. 

But no smoothing-out process of this kind occurs in the propagation 

of the oscillations considered here. These oscillations do not decrease or 

level out, since the sum of their kinetic and potential energies must remain 

constant for all time. 

§4. The Propagation of Waves 

The properties of oscillations can be very clearly demonstrated by the 

simplest examples. Let us consider two characteristic cases. 

Our first example is the equation of the vibrating string 

dhi _ 1 d*u 
dx2 a* dt* ' (15) 

This equation, as may be proved, has two particular solutions of the 

form 

“i = <t>i(* - at), ut = fa(x + at), 

where fa and fa are arbitrary twice-differentiable functions. 

By direct differentiation it is easy to show that the functions u, and ut 
satisfy equation (15). It may be shown that 

u = ut + ut 

is a general solution of this equation. 

The general form of the oscillations described by the functions a, and «2 

is of considerable interest. To consider it in the most convenient fashion, 

we mentally carry out the following experiment. Let the observer of the 

vibrating string be himself not stationary but moving along the axis Ox 
with velocity a. For such an observer the position of a point on the string 

will be defined not by a stationary coordinate system but by a moving 

one. Let f denote the x-coordinate of this system. Then £ = 0 will 

obviously correspond at each instant of time to the value x — at. Hence 

it is clear that 

£ = x - at. 

We can represent an arbitrary function u(x, t) in the form 

u(x, t) = fat, t). 

For the solution u, we will have 

«i(x, t) = fat). 
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so that in this coordinate system the solution u,(x, t) turns out to be 

independent of time. Consequently, for an observer moving with velocity 

a, the string looks like a stationary curve. For a stationary observer, 

however, the string appears to have a wave flowing along the axis Ox with 

velocity a. 
In exactly the same way the solution ut(x, t) may be considered as a 

wave travelling in the opposite direction with velocity a. With an infinite 

string both waves will be propagated infinitely far. Moving in different 

directions they may, by their superposition, produce quite strange shapes 

in the string. The resultant displacement may be increasing at certain 

times and decreasing at others. 

Fig. 3. 

If k, and , as they arrive at a given point from opposite sides, have 

the same sign, then they augment each other, but if they have opposite 

signs, they counteract each other. Figure 3 shows several successive 

positions of the string for two particular displacements. Initially 

the waves move independently toward each other, and then begin 

to interact. In the second case in figure 3 there will be an instant of 

complete annihilation of the oscillations, after which the waves again 

separate. 

Another example that easily lends itself to qualitative investigation is 

the propagation of waves in space. 



§5. METHODS OF CONSTRUCTING SOLUTIONS 27 

The equation 

a I 
Au ~ a1 dt* 

derived earlier, has two particular solutions of the form 

“ at). ut = - + at). 

(16) 

(17) 

where r denotes the distance of a given point from the origin of the 

coordinate system r* = x2 + y1 + z1, and <f>1 and <f>2 are arbitrary, twice- 

differentiable functions. 

The proof that h, and ut are solutions would take considerable time and 

is omitted here. 

The form of the waves described by these solutions is in general the 

same as for the string. If we pay no attention to the factor 1/r occuring 

on the right, then the first solution represents a wave travelling in the 

direction of increasing r. This wave is spherically symmetric; it is identical 

at all points that have the same value of r. 

The factor 1/r produces the result that the amplitude of the wave is 

inversely proportional to the distance from the origin. Such an oscillation 

is called a diverging spherical wave. A good picture of it is given by the 

circles that spread out over the surface of the water when a stone is 

thrown into it, except that in this case the waves are circular rather than 

spherical. 

This second solution of (17) is also of great interest; it is called a 

converging wave, travelling in the direction of the origin. Its amplitude 

grows with time to infinity as it approaches the origin. We see that such a 

concentration of the disturbance at one point may lead, even though the 

initial oscillations are small, to an immense upheaval. 

§5. Methods of Constructing Solutions 

On the possibility of decomposing any solution into simpler solutions. 

Solutions of the problems of mathematical physies formulated previously 

may be derived by various devices, which are different specific problems. 

But at the basis of these methods there is one general idea. As we have 

seen, all the equations of mathematical physics are, for small values of 

the unknown functions, linear with respect to the functions and their 

derivatives. The boundary conditions and initial conditions are also 

linear. 

If we form the difference between any two solutions of the same 
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equation, this difference will also be a solution of the equation with the 

right-hand terms equal to zero. Such an equation is called the corre¬ 

sponding homogeneous equation. For example, for the Poisson equation 

Au = — 4np, the corresponding homogeneous equation is the Laplace 

equation Au = 0. 

If two solutions of the same equation also satisfy the same boundary 

conditions, then their difference will satisfy the corresponding homo¬ 

geneous condition: The values of the corresponding expression on the 

boundary will be equal to zero. 

Hence the entire manifold of the solutions of such an equation, for 

given boundary conditions, may be found by taking any particular solution 

that satisfies the given nonhomogeneous condition together with all 

possible solutions of the homogeneous equation satisfying homogeneous 

boundary conditions (but not, in general, satisfying the initial conditions). 

Solutions of homogeneous equations, satisfying homogeneous boundary 

conditions may be added, or multiplied by constants, without ceasing to 

be solutions. 

If a solution of a homogeneous equation with homogeneous conditions 

is a function of some parameter, then integrating with respect to this 

parameter will also give us such a solution. These facts form the basis of 

the most important method of solving linear problems of all kinds for the 

equations of mathematical physics, the method of superposition. 

The solution of the problem is sought in the form 

« = m0 + X ’ 

where u0 is a particular solution of the equation satisfying the boundary 

conditions but not satisfying the initial conditions, and the uk are solutions 

of the corresponding homogeneous equation satisfying the corresponding 

homogeneous boundary conditions. If the equation and the boundary 

conditions were originally homogeneous, then the solution of the problem 

may be sought in the form 

«= X• 

In order to be able to satisfy arbitrary initial conditions by the choice of 

particular solutions uk of the homogeneous equation, we must have 

available a sufficiently large arsenal of such solutions. 

The method of separation of variables. For the construction of the 

necessary arsenal of solutions there exists a method called separation of 
variables or Fourier's method. 
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Let us examine this method, for example, for solving the problem 

(18) 

“ Is = 0, u |,_o = f0(x, y, z), u,|,_o = /,(*, y, z). 

In looking for any particular solution of the equation, we first of all 

assume that the desired function u satisfies the boundary condition u |5 = 0 

and can be expressed as the product of two functions, one of which depends 

only on the time t and the other only on the space variables: 

u(x, y, z, t) = U(x, y, z) T(t). 

Substituting this assumed solution into our equation, we have 

T(i) AU = T'\t) U. 

Dividing both sides by TU gives 

_T _ Jt/ 

T ~ U ' 

The right side of this equation is a function of the space variables only 

and the left is independent of the space coordinates. Hence it follows that 

the given equation can be true only if the left and right sides have the 

same constant value. We are led to a system of two equations 

The constant quantity on the right is denoted here by —X\ in order to 

emphasize that it is negative (as may be rigorously proved). The subscript 

k is used here to note that there exist infinitely many possible values of 

—AJ, where the solutions corresponding to them form a system of 

functions complete in a well-known sense. 

Cross-multiplying in both equations, we get 

T" + X\T=0; AU + X*U = 0. 

The first of these equations has, as we know, the simple solution 

T = Ak cos Xkt + Bk sin Xkt, 

where Ak and Bk are arbitrary constants. This solution may be further 

simplified by introducing the auxiliary angle <f>. We have 

VAl+Bt 
= sin^fc. 

Bk 

VAl 
= cos<j>k, VA2 + B\ = Mk 

Bl 
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Then 

T = VA\ + B\ sin (\t + 4>k) = Mk sin (Akt + <f>k). 

The function T represents a harmonic oscillation with frequency Xk, 

shifted in phase by the angle <f>k . 
More difficult and more interesting is the problem of finding a solution 

of the equation 

AU + X\U=0 (19) 

for given homogeneous boundary conditions; for example, for the 

conditions 

U\s = 0 

(where S is the boundary of the volume Si under consideration), or for 

any other homogeneous condition. The solution of this problem is not 

always easy to construct as a finite combination of known functions, 

although it always exists and can be found to any desired degree of 

accuracy. 

The equation AU + AJt/ = 0 for the condition U\s = 0 has first of 

all the obvious solution U = 0. This solution is trivial and completely 

useless for our purposes. If the A* are any randomly chosen numbers, 

then in general there will not be any other solution to our problem. 

However, there usually exist values of Xk for which the equation does have 

a nontrivial solution. 

All possible values of the constant X\ are determined by the requirement 

that equation (19) have a nontrivial solution, i.e., distinct from the 

identically vanishing function, which satisfies the condition l/|s = 0. 

From this it also follows that the numbers denoted by —A* must be 

negative. 

For each of the possible values of A* in equation (19), we can find at 

least one function Uk. This allows us to construct a particular solution 

of the wave equation (18) in the form 

uk = Mk sin (Akt + <f>k) Uk{x, y, z). 

Such a solution is called a characteristic oscillation (or eigenvibration) of 

the volume under consideration. The constant Xk is the frequency of the 

characteristic oscillation, and the function U^x, y, z) gives us its form. 

This function is usually called an eigenfunction (characteristic function). 
For all instants of time, the function uk , considered as a function of the 
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variables x, y, and z, will differ from the function Uk(x, y, z) only in 

scale. 

We do not have space here for a detailed proof of the many remarkable 

properties of characteristic oscillations and of eigenfunctions; therefore 

we will restrict ourselves merely to listing some of them. 

The first property of the characteristic oscillations consists of the fact 

that for any given volume there exists a countable set of characteristic 

frequencies. These frequencies tend to infinity with increasing k. 
Another property of the characteristic oscillations is called orthogonality. 

It consists of the fact that the integral over the domain Q of the product 

of eigenfunctions corresponding to different values of A* is equal to zero.* 

J// UJ,x, y, Z) U^x, y, z) dx dydz = 0 (j * k). 
a 

For j = k we will assume 

/// U^X'y' Z>* dx dy dz = '• 
Q 

This can always be arranged by multiplying the functions U^x, y, z) by 

an appropriate constant, the choice of which does not change the fact 

that the function satisfies equation (19) and the condition U |s = 0. 

Finally, a third property of the characteristic oscillations consists of the 

fact that, if we do not omit any value of Xk , then by means of the eigen¬ 

functions (/*(*, y, z), we can represent with any desired degree of exactness 

a completely arbitrary function J\x, y, z), provided only that it satisfies 

the boundary condition f\s — 0 and has continuous first and second 

derivatives. Any such function f(x, y, z) may be represented by the 

convergent series 

f(x,y,z)=--XCkUk{x,y,z). (20) 
k-l 

The third property of the eigenfunctions provides us in principle with 

the possibility of representing any function J\x, y, z) in a series of eigen¬ 

functions of our problem, and from the second property we can find all 

* If to one and the same value of A there correspond several essentially different 
(linearly independent) functions U, then this value of A is considered as occurring a 
corresponding number of times in the set of eigenvalues A, . The condition of ortho¬ 
gonality for functions corresponding to the same value of A, may be ensured by proper 
choice of these functions. 
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the coefficients of this series. In fact, if we multiply both sides of equation 

(20) by Us(x, y, z) and integrate over the domain Q, we get 

y, z) U,(x, y, z) dx dy dz 
a 

= y c4 f f f U^x, V, z) U^x, y, z) dx dy dz. 

In the sum on the right, all the terms in which k =£ j disappear because 

of the orthogonality, and the coefficient of C, is equal to one. Consequently 

we have 

c, = J7J7(*. y- 2) U,(X, y, z) dx dy dz. 

a 

These properties of the characteristic oscillations now allow us to solve 

the general problem of oscillation for any initial conditions. 

For this we assume that we have a solution of the problem in the form 

u = S Uk(x, y, z) (Ak cos Xkt + Bk sin A*/) (21) 

and try to choose the constants Ak and Bk so that we have 

« It—o = /o(*. >*» z), 

du 
dt 1-0 

= A(.x, y, z). 

Putting / = 0 in the right side of (21), we see that the sine terms disappear 

and cos Akt becomes equal to one, so that we will have 

Mx, y, z) = ^ AkV*(.x, y, z). 
k-1 

From the third property, the characteristic oscillations can be used for 

such a representation, and from the second property, we have 

Ak = jjjUx, y, z) Uk(x, y, z) dx dy dz. 
a 

In the same way, differentiating formula (21) with respect to t and putting 

/ = 0, we will have 

00 

= fi(x, y, z) = y Ak(Bk cos Akt - Ak sin A*/) \,.0Uk(x, y, z) 
(-0 k-i 

= X ABhU^x, y, z). 
k-1 

du 
8i 
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Hence, as before, we obtain the values of Bk as 

Bk = Tk SSS^X'y'Z* U^X’y’ z^dx dy dz’ 

Knowing Ak and Bk, we in fact know both the phases and the amplitudes 

of all the characteristic oscillations. 

In this way we have shown that by addition of characteristic oscillations 

it is possible to obtain the most general solution of the problem with 

homogeneous boundary conditions. 

Every solution thus consists of characteristic oscillations, whose 

amplitude and phase we can calculate if we know the initial conditions. 

In exactly the same way, we may study oscillations with a smaller 

number of independent variables. As an example let us consider the 

vibrating string, fixed at both ends. The equation of the vibrating string 

has the form 

dhi . d*u 

dP ~ a ax* ' 

Let us suppose that we are looking for a solution of the problem for a 

string of length /, fixed at the ends 

M 12-0 = «l*-l = 0. 

We will look for a collection of particular solutions 

uk = Tk(t) Uk(x). 

We obviously obtain, just as before, 

T’kUk = oW’kTk , 
or 

Hence 

Tk = Ak cos Akt + Bk sin Akt, 

Uk = Mk cos — x + Nk sin — x. 
a a 

We use the boundary conditions in order to find the values of A* . For 

general A* it is not possible to satisfy both the boundary conditions. From 
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the condition Uk\x=0 = 0 we get Mk = 0, and this means that Uk = Nk 
sin (Ak/a) x. Putting x = I, we get sin (Akl/a) = 0. This can only happen if 

Akl/a = kn, where k is an integer. This means that 

K — 
akn 

The condition J U\dx = 1 shows that Nk = . Finally 

. I2 . knx aknt . aknt 
Uk(x) = Jj sin —j— . Tk = Ak cos —j— Bk sin —j— . 

In this manner the characteristic oscillations of the string, as we see, 

have sinusoidal form with an integral number of half waves on the entire 

string. Every oscillation has its own frequency, and the frequencies may 

be arranged in increasing order 

an . an an an 
I '1 i ' i i ’ ”'* * / »’" • 

It is well known that these frequencies are exactly those that we hear in 

the vibrations of a sounding string. The frequency is called the fundamental 
frequency, and the remaining frequencies are overtones. The eigenfunctions 

V2//sin (knx/I) on the interval 0 < x < / change sign k — 1 times, since 

knx/l runs through values from 0 to kn, which means that its sine changes 

sign k — 1 times. The points where the eigenfunctions Uk vanish are 

called nodes of the oscillations. 

If we arrange in some way that the string does not move at a point 

corresponding to a node, for example of the first overtone, then the 

fundamental tone will be suppressed, and we will hear only the sound of the 

first overtone, which is an octave higher. Such a device, called stopping, 

is made use of on instruments played with a bow: the violin, viola, and 

violoncello. 

We have analyzed the method of separating variables as applied to 

the problem of finding characteristic oscillations. But the method can be 

applied much more widely, to problems of heat flow and to a whole series 

of other problems. 

For the equation of heat flow 

with the condition 

T\s= 0 
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we will have, as before. 

Here 

T = XFk(t)Uk(x,y, 2). 

FA) 

FA) 
-Ai, AUk + XkUk = 0. 

The solution is obtained in the form 

T -2,r*UAx,y,i). 
*-i 

This method has also been used with great success to solve some 

other equations. Consider, for example, the Laplace equation 

Au = 0 

in the circle 

** + >*< I, 

and assume that we have to construct a solution satisfying the condition 

« lr-1 = /(«?). 

where r and & denote the polar coordinates of a point in the plane. 

The Laplace equation may be easily transformed into polar coordinates. 

It then has the form 

1 du 1 d*u _ . 

dr* r dr r* d&% 

We want to find a solution of this equation in the form 

« = f, FA) Otf). 
k-1 

If we require that every term of the series individually satisfy the equation, 

we have 

[*fr) + 7 *«')] W + 75- »*>) FA) = 0. 

Dividing the equation by Rk(r) dk(&)/r*, we get 

** [«M + \ *UD] W) 
RA) OA) ' 
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Again setting 

u W 
we have 

'2 - Aitf* = 0. 

It is easy to see that the function 0*(0) must be a periodic function of 9 
with period 2n. Integrating the equation d"k(&) -f A\6k(&) = 0, we get 

0* = ak cos Xk& + bk sin Xk&. 

This function will be periodic with the required period only if A* is an 

integer. Putting A* = k, we have 

dk ~ ak cos k& + bk sin k&. 

The equation for Rk has a general solution of the form 

Rk = Ark + —f . 

Retaining only the term that is bounded for r -*• 0, we get the general 

solution of the Laplace equation in the form 

cc 

u = a0 + ^ (ak cos k& + bk sin k&) rk. 
k-1 

This method may often be used to find nontrivial solutions of the 

equation A Uk + A* Uk = 0 that satisfy homogeneous boundary conditions. 

In case the problem can be reduced to problems of solving ordinary 

differential equations, we say that it allows a complete separation of 

variables. This complete separation of variables by the Fourier method 

can be carried out, as was shown by the Soviet mathematician V. V. 

Stepanov, only in certain special cases. The method of separation of 

variables was known to mathematicians a long time ago. It was used 

essentially by Euler, Bernoulli, and d’Alembert. Fourier used it syste¬ 

matically for the solution of problems of mathematical physics, particularly 

in heat conduction. However, as we have mentioned, this method is often 

inapplicable; we must use other methods, which we will now discuss. 

The method of potentials. The essential feature of this method is, as 

before, the superposition of particular solutions for the construction of a 

solution in general form. But this time for the particular fundamental 

solutions, we use functions that become infinite at one point. Let us illus¬ 

trate with the Laplace and Poisson equations. 
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Let M0 be a point of our space. We denote by r(M, M0) the distance 

from the point M0 to a variable point M. The function l/r(A/, M0) for a 

fixed M0 is a function of the variable point M. It is easy to establish the 

fact that this function is a harmonic function of the point M in the entire 

space,* except of course, at the point A/0, where the function becomes 

infinite, together with its derivatives. 

The sum of several functions of this form 

N 

?, A‘KM, Mi) ’ 

where the points A/,, Mz, •••, MN are any points in the space, is again a 

harmonic function of the point M. This function will have singularities at 

all the points Ms. If we choose the points A/,, A/2, •••, MN as densely 

distributed as we please in some volume Q, and at the same time multiply 

by coefficients A{, we may pass to the limit in this expression and get a 

new function 

U ‘im ?, r(M, Md JJJ r(M, A/')dQ 

A(M') 

where the points M' range over all of the volume Q. The integral in this 

form is called a Newtonian potential. It may be shown, although we will 

not do it here, that the function U thus constructed satisfies the equation 

AU = — 4irA. 
The Newtonian potential has a simple physical meaning. To understand 

it, we will begin with the function AJr(M, A/,). 

The partial derivatives of this function with respect to the coordinates 

are 

= Z. 

At the point Mt we place a mass A,, which will attract all bodies with 

a force directed toward the point M, and inversely proportional to the 

square of the distance from . We decompose this force into its compo¬ 

nents along the coordinate axes. If the magnitude of the force acting on a 

material point of unit mass is AJr*, the cosines of the angles between the 

direction of this force and the coordinate axis will be (x, — x)/r, (jt — y)/r, 
(z, — r)/r. Thus the components of the force exerted on a unit mass at the 

point M by an attracting center A/, will be equal to X, Y, and Z, the 

partial derivatives of the function AJr with respect to the coordinates. If 

That is, the function satisfies the Laplace equation. 
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we place attracting masses at points A/,, A/2, MN, then every material 

point with unit mass placed at a point M will be acted on by a force equal 

to the resultant of all the forces acting on it from the given points Mt. 
In other words 

X = 
d_ Aj 

dx& r(M, M,)' 
Y = — V Ai z = 

a.v^ r(M, Md ' Z' dz ^ r{M, Mi)' 

Passing to the limit and replacing the sum by an integral, we get 

X = 
su 

dx' 
Y 

dU = _ dU_ 
dy ’ Z dz ’ 

where 

The function U, with partial derivatives equal to the components of the 

force acting on a point, is called the potential of the force. Thus the function 

A{/r(M, Mt) is the potential of the attraction exerted by the point M,, 

the function E [AJr(M, A/,)] is the potential of the attraction exerted by 

the group of points A/,, Mt, MN , and the function U = JJJn (A/r) dQ 
is the potential of the attraction exerted by the masses continuously 

distributed in the volume Q. 
Instead of distributing the masses in a volume, we may place the points 

Mx, A/j, Mn on a surface S. Again increasing the number of these 

points, we get in the limit the integral 

V = 

s 

(22) 

where Q is a point on the surface S. 

It is not difficult to see that this function will be harmonic everywhere 

inside and outside the surface S. On the surface itself the function is 

continuous, as can be proved, although its partial derivatives of the first 

order have finite discontinuities. 

The functions d(l/r)/dXi, 0(l/r)/3y„ and 8(l/r)/dz, also are harmonic 

functions of the point M for fixed M,. From these functions in turn, we 

may form the sums 

d- dl d- 

X A* 8^ + X Bi ju: + X Ci ar • dyf dZi 

which will be harmonic functions everywhere except perhaps at the points 

A/,, Mt, Mn . 
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Of particular importance is the integral 

10- d- ai 

w = SS ^Q)[w cos cos (*• y^ + W cos ** 

= jjp(Q)K(Q,M)ds, (23) 

in which x', y', and z' are the coordinates of a variable point Q on the 

surface S, n is the direction of the normal to the surface 5 at the point Q 
while x, y, and z are the directions of the coordinate axes, and r is the 

distance from Q to the point M at which the value of the function W is 

defined. 

The integral (22) is called the potential of a simple layer, and the integral 

(23) the potential of a double layer.* The potential of a double layer and 

the potential of a simple layer represent a function harmonic inside and 

outside of the surface S. 
Many problems in the theory of harmonic functions may be solved by 

using potentials. By using the potential of a double layer, we may solve 

the problem of constructing, in a given domain, a harmonic function u, 
having given values 2mf>(Q) on the boundary 5 of the domain. In 

order to construct such a function, we only need to choose the function 

p.(,Q) in a suitable way. 

This problem is somewhat reminiscent of the similar problem of finding 

the coefficients in the series 

4> = X 

so that it may represent the function on the left side. 

A remarkable property of the integral W consists of the fact that its 

limiting value as the point M approaches Q0 from the inner side of the 

surface has the form 

Jim W = 2np(Q0) + ff K(Q, Q0) p(Q) ds. 

* The names of these potentials are connected with the following physical fact. We 
assume that on the surface S, we have introduced electrical charges. They create in 
the space an electric field. The potential of this field will be represented by the integral 
(22), which is therefore called the potential of a simple layer. 

We now assume that the surface S is a thin nonconducting film. On one side of it 
we distribute, according to some law, electric charges of one sign (for example, positive). 
On the other side of 5 we distribute, with the same law, electric charges of opposite 
sign. The action of these two electric layers also generates in the space an electric field. 
As can be calculated, the potential of this field will be represented by the integral (23). 
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Equating this expression to the given function 2tt</>((?0), we get the 

equation 

p(Qo) +2^// *(Q, Co)M0 ds = #&). 
5 

This equation is called an integral equation of the second kind. The theory 

of such equations has been developed by many mathematicians. If we 

can solve this equation by any method, we obtain a solution of our original 

problem. 

In exactly the same way, we may find a solution of other problems in the 

theory of harmonic functions. After choice of a suitable potential, the 

density, i.e., the value of an arbitrary function appearing in it, is defined 

in such a way that all the prescribed conditions are fulfilled. 

From a physical point of view, this means that every harmonic function 

may be represented as the potential of a double electric layer, if we 

distribute this layer over a surface S with appropriate density. 

Approximate construction of solutions; Galerkin’s method and the 

method of nets. 1. We have discussed two methods for solving equations 

of mathematical physics: the method of complete separation of variables 

and the method of potentials. These methods were developed by scientists 

of the 18th and 19th centuries, Fourier, Poisson, OstrogradskiT, Ljapunov, 

and others. In the 20th century they were augmented by a series of other 

methods. We will examine two of them, Galerkin’s method and the method 

of finite differences, or the method of nets. 

The first method was proposed by the Academician B. G. Galerkin for 

the solution of equations of the form 

2222^ 
d*U 

<>u 8x, dx, dxk dx, 

d*U 

+222 Bi,k 
d3U 

dxt dx, dxk 

dx, dx dx, 

containing an unknown parameter A, where the indices /, j, k, and / 

independently take on the values I, 2, and 3. These equations are derived 

from equations containing an independent variable t, by using the method 

of separation of variables in the same way as the wave equation 

leads to the equation AU + A*i/ = 0. The problem consists of finding 

those values of A for which the homogeneous boundary-value problem has 

a nonzero solution and then constructing that solution. 
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The essence of Galerkin’s method is as follows. The unknown function 

is sought in the approximate form 

N 

X ’ *2 » *3), 
m-1 

where the oj„(x1 , x2, x3) are arbitrary functions satisfying the boundary 

conditions. 

The assumed solution is substituted in the left side of the equation, 

resulting in the approximate equation 

N 

2>. 83a>„ 

dXi dX) e)xk 

+s 2+2«. £+H+- »■ 
For brevity we denote the expression inside the brackets by Ltom , and 

write the equation in the form 

X amLwm + A 2} amuim % 0. 

Now we multiply both sides of our approximate equation by w„ and 

integrate over the domain Q in which the solution is sought. We get 

JJJ X amU«Lojm dQ + X JJJ X dQ « 0, 
n a 

which may be rewritten in the form 

X fl>" JJJ dQ + A X Om JJJ wm<^n dQ 0. 
m-1 Q tn-1 q 

If we set ourselves the aim of satisfying these equations exactly, we will 

have a system of algebraic equations of the first degree for the unknown 

coefficients am. The number of equations in the system will be equal to 

the number of unknowns, so that this system will have a nonvanishing 

solution only if its determinant is zero. If this determinant is expanded, 

we get an equation of the <Vth degree for the unknown number A. 

After finding the value of A and substituting it in the system, we solve 

this system to obtain approximate expressions of the function U. 
Galerkin’s method is not only suitable for equations of the fourth order, 

but may be applied to equations of different orders and different types. 
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2. The last of the methods that we will examine is called the method of 

finite differences or the method of nets. 

The derivative of the function u with respect to the variable x is defined 

as the limit of the quotient 

u(x + Ax) — u(x) 

Ax 

This quotient in its turn may be represented in the form 

1 
Ax 

and from the well-known theorem of the mean value (cf. Chapter II, §8): 

u(x + Ax) — u(x) _ du_ | 

Ax dx L_{ ’ 

where f is a point in the interval 

x < f < x + Ax. 

All the second derivatives of u, both the mixed derivatives and the deriv¬ 

atives with respect to one variable, may also be approximately represented 

in the form of difference quotients. Thus the difference quotient 

u(x Ax) — 2u(x) + “(x — Ax) 
(Ax? 

is represented in the form 

_1_ r u{x + Ax) - u(x) 

Ax L Ax 

u(x) — u(x — Ax) 
Ax 

1 |ra(*i + Ax) - tKxQi I1'"1 

Ax IL Ax i 

From the mean-value theorem the difference quotient of the function 

u(xx + Ax) - ujxj 

Ax 

may be replaced by the value of the derivative. Consequently 

<Kxi) ~ <H*i ~ Ax) = 
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where f is some intermediate value in the interval 

x — Ax < £ < x. 

Thus 

("zr) + 2"M+*<* - 

= [<£(*) - <Hx - Ax)] = <f>'(£). 

On the other hand 

which means that 

W)- ^L±^)r^(Q. 

Once more using the formula for finite increments, we see that 

no = 

where 
f f + Ax. 

Consequently, 

(-^-) [«(■* + 41a:) - 2u(x) + u(x - Ax)] = u'(-q), 

where x — Ax < rj < x + Ax. 
If the derivative u"(x) is continuous and the value of Ax is sufficiently 

small, then u"(rj) will be only slightly different from u"(x). Thus our 
second derivative is arbitrarily close to the difference quotient in question. 
In exactly the same way it may be shown, for example, that the mixed 
second derivative 

dlu 
dx dy 

can be approximately represented by the formula 

Sk = + Ax’y + Ay) *x + Ax’y) 
-u(x,y + Ay) + u(x, y)]. 

We return now to our partial differential equation. 
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For definiteness, let us assume that we are dealing with the Laplace 

equation in two independent variables 

s*u _ 

dx* + df ~ 

Further, let the unknown function u be given on the boundary S of the 

domain 12. As an approximation we assume that 

— = y) - 2*Kx, y) + u(x - Ax, y) 

dx1 (Ax)* 

= u(x, y + Ay) - 2u(x, y) + u(x, y - Ay) 

df (Ay)* 

If we put Ax = Ay = h, then 

1 
[“(•« + h, y) + u(x, y + h) + u(x - h, y) 

^ +u(x,y-h)-4u(x,y)). 

Now let us cover the domain 

12 with a square net with 

vertices at the points x = kh, 

y = bh (figure 4). We replace 

the domain by the polygon 

consisting of those squares 

of our net that fall inside 12, 

so that the boundary of the 

domain is changed into a 

broken line. We take the 

values of the unknown func¬ 

tion on this broken line to be 

Fig. 4. those given on the boundary 

of 5. The Laplace equation 

is then approximated by the equation 

u(x + h,y) + u(x, y + h) + u(x - h,y) + u(x,y - h) - 4u(x, y) = 0 

for all interior points of the domain. This equation may be rewritten in 

the form 

u(x, y) = [m(x + h,y) + u(x, y + h) + u(x — h, y) + u(x, y - h)]. 

Then the value of u at any point of the net, for example the point 1 in 

figure 4, is equal to the arithmetic mean of its values at the four adjacent 

points. 

We assume that inside the polygon there are N points of our net. At every 

such point we will have a corresponding equation. In this manner we get a 
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system of N algebraic equations in N unknowns, the solution of which 

gives us the approximate values of the function u on the domain Q. 

It may be shown that for the Laplace equation the solution may be 

found to any desired degree of accuracy. 

The method of finite differences reduces the problem to the solution of 

a system of N equations in N unknowns, where the unknowns are the 

values of the desired function at the knots of some net. 

Further the method of finite differences can be shown to be applicable 

to other problems of mathematical physics: to other differential equations 

and to integral equations. However its application in many cases involves 

a number of difficulties. 

It may turn out that the solution of the system of N algebraic equations 

in N unknowns, constructed by the method of nets, either does not exist 

in general or gives a result that is quite far from the true one. This happens 

when the solution of the system of equations leads to accumulation of 

errors; the smaller we take the length of the sides of the squares in the net 

the more equations we get, so that the accumulated error may become 

greater. 

In the example given previously of the Laplace equation, this does not 

happen. The errors in solving this system do not accumulate but, on the 

contrary, steadily decrease if we solve the system, for example, by a method 

of successive approximations. For the equation of heat flow and for the 

wave equation it is essential to choose the nets properly. For these equa¬ 

tions we may get both good and bad results. 

If we are going to solve either of these equations by the method of nets, 

after choosing the net for the values of /, we must not choose too fine a net 

for the space variables. Otherwise we get a very unsatisfactory system of 

equations for the values of the unknown function; its solution gives a 

result that oscillates rapidly with large amplitudes and is thus very far 

from the true one. 

The great variety of possible results may best be seen in a simple 

numerical example. Consider the equation 

du d*u 

a?- ai* 

for the equation of heat flow in the case in which the temperature does not 

depend on y or z. We take the mesh width of the net along the values of 

i equal to k and along the values of x equal to h 

du u(t -|- k, x) - u(t, x) 

dt* k 

d2u u(t, x + h) - 2u(t, x) + u{t, x - h) 

dx* ~ h* 
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Then our equation may be written approximately in the form 

u(t + k, x) = u(t, x + A) + (l - 2 u(t, x) + u(t, x - A). 

If, for a certain mesh-point value of t, we know the values of u at the points 

x — h, x, and x + h, it is easy to find the value of u at the point x and the 

next mesh point t + k. Assume that the constant k, i.e., the mesh width 

in the net with respect to t, is already chosen. Let us consider two cases 

for the choice of h. We put A2 = k in the first case and A2 = 2k in the 

second and solve the following problem by the method of nets. 

At the initial instant, u = 0 for all negative values of x, and u = 1 for 

all nonnegative values of x. We will have, writing in one line the values 

of the unknown function u for the given instant, two tables: 

Table 1 

'v x 
1 N. 

— 5A -4A -3A — 2A -A 0 A 2A 3A 4A 5A 

0 0 n m 0 1 1 1 1 1 1 

k 0 El 1 0 1 1 1 1 1 

21: 0 i -1 2 0 1 1 1 1 

3k 0 1 i ~2 4 -3 3 0 1 1 

4 k 0 i -3 7 -9 10 -6 4 0 1 1 

5k 1 -4 11 -19 26 I -25 20 -10 5 0 1 

Table 2 

m — 2A B B a 4A 5A 

0 0 o □ 1 i 1 1 1 1 

k 0 H 0 
1 

2 

1 

2 
i 1 1 1 1 

1 1 3 3 
2k 0 ■ ■ ■ ■ 1 1 1 1 

4 4 4 4 

1 1 1 1 7 7 
3k la -T 1 1 1 

8 8 2 2 8 8 

4k 
i 1 5 5 11 11 15 15 

1 1 

16 16 16 16 16 16 16 16 
1 

5k 
I 1 3 3 1 • 13 13 31 31 1 

32 32 16 16 2 16 16 32 32 
1 
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In Table 2 we obtain values, for any given instant of time, which vary 

smoothly from point to point. This table gives a good approximation to 

the solution of the heat-flow equation. On the other hand, in Table 1, 

in which, as it would seem, the exactness should have been increased 

because of our finer division for the Jt-interval, the values of u oscillate 

very rapidly from positive values to negative ones and attain values that 

are much greater than the initially prescribed ones. It is clear that in this 

table the values are extraordinarily far from those that correspond to 

the true solution. 

From these examples it is clear that if we wish to use the method of nets 

to get sufficiently accurate and reliable results, we must exercise great 

discretion in our choice of intervals in the net and must make preliminary 

investigations to justify the application of the method. 

The solutions obtained by using the equations of mathematical physics 

for these or other problems of natural science give us a mathematical 

description of the expected course or the expected character of the physical 

events described by these equations. 

Since the construction of a model is carried out by means of the 

equations of mathematical physics, we are forced to ignore, in our abstrac¬ 

tions, many aspects of these events, to reject certain aspects as non- 

essential and to select others as basic, from which it follows that the results 

we obtain are not absolutely true. They are absolutely true only for that 

scheme or model that we have considered, but they must always be 

compared with experiment, if we are to be sure that our model of the 

event is close to the event itself and represents it with a sufficient degree 

of exactness. 

The ultimate criterion of the truth of the results is thus practical ex¬ 

perience only. In the final analysis, there is just one criterion, namely 

practical experience, although experience can only be properly understood 

in the light of a profound and well-developed theory. 

If we consider the vibrating string of a musical instrument, we can 

understand how it produces its tones only if we are acquanted with the 

laws for superposition of characteristic oscillations. The relations that hold 

among the frequencies can be understood only if we investigate how these 

frequencies are determined by the material, by the tension in the string, 

and by the manner of fixing the ends. In this case the theory not only 

provides a method of calculating any desired numerical quantities but 

also indicates just which of these quantities are of fundamental importance, 

exactly how the physical process occurs, and what should be observed in 

it. 

In this way a domain of science, namely mathematical physics, not 

only grew out of the requirements of practice but in turn exercised its 
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own influence on that practice and pointed out paths for further progress. 

Mathematical physics is very closely connected with other branches of 

mathematical analysis, but we cannot discuss these connections here, 

since they would lead us too far afield. 

§6. Generalized Solutions 

The range of problems in which a physical process is described by 

continuous, differentiable functions satisfying differential equations may 

be extended in an essential way by introducing into the discussion dis¬ 

continuous solutions of these equations. 

In a number of cases it is clear from the beginning that the problem 

under consideration cannot have solutions that are twice continuously 

differentiable; in other words, from the point of view of the classical 

statement of the problem given in the preceding section, such a problem 

has no solution. Nevertheless the corresponding physical process does 

occur, although we cannot find functions describing it in the preassigned 

class of twice-differentiable functions. Let us consider some simple 

examples. 

1. If a string consists of two pieces of different density, then in the 

equation 
cPu 

dp = o‘ 
Pu 

dx* 
(24) 

the coefficient will be equal to a different constant on each of the corre¬ 

sponding pieces, and so equation (24) will not, in general, have classical 

(twice continuously differentiable) solutions. 

2. Let the coefficient a be a constant, but in the initial position let the 

string have the form of a broken line given by the equation m|,_0 = <f>(x). 

At the vertex of the broken line, the function <f>(x) obviously cannot have 

a first derivative. It may be shown that there exists no classical solution 

of equation (24) satisfying the initial conditions 

«l,-o = <KX)< = 0 
(here and in what follows u, denotes du/dt). 

3. If a sharp blow is given to any small piece of the string, the resulting 

oscillations are described by the equation 

d2u . &u ... , 

where f(x, t) corresponds to the effect produced and is a discontinuous 

function, differing from zero only on the small piece of the string and 
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during a short interval of time. Such an equation also, as can be easily 

established, cannot have classical solutions. 

These examples show that requiring continuous derivatives for the 

desired solution strongly restricts the range of the problems we can solve. 

The search for a wider range of solvable problems proceeded first of all 

in the direction of allowing discontinuities of the first kind in the derivatives 

of highest order, for the functions serving as solutions to the problems, 

where these functions must satisfy the equations except at the points of 

discontinuity. It turns out that the solutions of an equation of the type 

Au — 0 or du/dt — Au = 0 cannot have such (so-called weak) discon¬ 

tinuities inside the domain of definition. Solutions of the wave equation 

can have weak discontinuities in the space variables x, y, z, and in t only 

on surfaces of a special form, which are called characteristic surfaces. If a 

solution u(x, y, z, i) of the wave equation is considered as a function 

defining, for f = r,, a scalar field in the x, y, z space at the instant , 

then the surfaces of discontinuity for the second derivatives of u(x, y, z, /) 

will travel through the (x, y, z) space with a velocity equal to the square 

root of the coefficient of the Laplacian in the wave equation. 

The second example for the string shows that it is also necessary to 

consider solutions in which there may be discontinuous first derivatives; 

and in the case of sound and light waves, we must even consider solutions 

that themselves have discontinuities. 

The first question that comes up in investigating the introduction of 

discontinuous solutions consists in making clear exactly which discontin¬ 

uous functions can be considered as physically admissible solutions of an 

equation or of the corresponding physical problem. We might, for example, 

assume that an arbitrary piecewise constant function is “a single solution” 

of the Laplace equation or the wave equation, since it satisfies the equation 

outside of the lines of discontinuity. 

In order to clarify this question, the first thing that must be guaranteed 

is that in the wider class of functions, to which the admissible solutions 

must belong, we must have a uniqueness theorem. It is perfectly clear that 

if, for example, we allow arbitrary piecewise smooth functions, then this 

requirement will not be satisfied. 

Historically, the first principle for selection of admissible functions was 

that they should be the limits (in some sense or other) of classical solutions 

of the same equation. Thus, in example 2, a solution of equation (24) 

corresponding to the function <f>(x), which does not have a derivative at 

an angular point may be found as the uniform limit of classical solutions 

un(x, t) of the same equation corresponding to the initial conditions 

«nl(-o = wnJ f-0 = o, where the <j>„(x) are twice continuously 

differentiable functions converging uniformly to <f>(x) for n -*■ oo. 
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In what follows, instead of this principle we will adopt the following: 

An admissible solution u must satisfy, instead of the equation Lu = f 

an integral identity containing an arbitrary function <t>. 

This identity is found as follows: We multiply both sides of the equation 

Lu — f by an arbitrary function <P, which has continuous derivatives with 

respect to all its arguments of orders up through the order of the equation 

and vanishes outside of the finite domain D in which the equation is 

defined. The equation thus found is integrated over D and then trans¬ 

formed by integration by parts so that it does not contain any derivatives 

of u. As a result we get the identity desired. For equation (24), for example, 

it has the form 

D 

S. L. Sobolev has shown that for equations with constant coefficients 

these two principles for the selection of admissible (or as they are now 

usually called, generalized) solutions, are equivalent to each other. But for 

equations with variable coefficients, the first principle may turn out to be 

inapplicable, since these equations may in general have no classical 

solutions (cf. example 1). The second of these principles provides the 

possibility of selecting generalized solutions with very broad assumptions 

on the differentiability properties of the coefficients of the equations. It is 

true that this principle seems at first sight to be overly formal and to have 

a purely mathematical character, which does not directly indicate how 

the problems ought to be formulated in a manner similar to the classical 

problems. 

We give here a modification that, it seems to us, is more appropriate 

physically, since it is directly connected with the well-known principle of 

Hamilton. 

As is well known, analysis of the methods of deducing various equations 

of mathematical physics led in the first half of the 19th century to the 

discovery of a new law known as Hamilton’s principle. Starting from this 

principle, it was possible to obtain in a uniform manner all the known 

equations of mathematical physics. We will illustrate this by the example 

of the problem considered in §3 for the oscillations of a string of finite 

length with fixed ends. 

First of all we construct the so-called Lagrange function Uj) for our 

string, namely the difference between the kinetic and potential energies. 

From what was said in §3 it follows that 

W) = I, (5 p"' _ T “*) dx' 
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According to Hamilton’s principle, the integral 

51 

5= flL(i)di 

assumes its minimum value for the function u(x, t), corresponding to the 

true motion of the string compared with all other functions v(x, y) which 

are equal to zero for x = 0 and x = l and coincide with u(x, f,) and 

u(x, t2) for t = /, and t = t2. Here /, and i2 are fixed arbitrarily, and the 

functions v must have finite integrals S. As a result of this principle the 

so-called first variation of 5 (cf. Chapter VIII) must be equal to zero, ie., 

85 = f'‘ f' (pit,*, - Tux<Pz) dx dt = 0, (25) 
o 

where <P{x, t) is an arbitrary function differentiable with respect to x and t 

and equal to zero on the edges of the rectangle 0 ^ x ^ /, ^ / < t2. 

Equation (25) is also the condition that must be met by the desired 

function u(x, t). If we know that u(x, i) has derivatives of the second 

order, then condition (25) may be put in a different form. Integrating 

(25) by parts and applying the fundamental lemma of the calculus of 

variations, we find that u(x, t) must satisfy the equation 

which is identical with (24), if p and T are constants and T/p = ai1. 

It is not difficult to see that any solution u(x, t) of equation (26) satisfies 

the identity (25) for all given <t>. The converse turns out to be false, since 

u(x, l) may in general not have second derivatives. So we are extending 

the range of solvable problems, if we replace equation (26) by the identity 

(25). 

To determine a specific oscillation of the string, we must add to the 

boundary conditions 

$
 

•>
%

 II 5
, II P
 

(27) 

the initial conditions 

u(x, 0) = 4>0(x), 

u,(x, 0) = falx). (28) 

If a solution is sought in the class of continuously differentiable func¬ 

tions, then conditions (27) and (28) may be stated separately from (25) 

as requirements to be met. But if we allow the proposed solution to be 

“worse,” then these conditions lose their meaning in the form given and 

they must be partly or wholly included in the integral identity (25). 
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For example, let u(x, t) be continuous for 0 ^ x < /, 0 < t < T, but 

let its first derivatives have discontinuities. The second equation in (28) 

then loses its meaning as a limiting condition. In this case the problem 

can be stated as follows: to find a continuous function u which fulfills 

condition (27) and the first of the conditions (28) for which the equation 

\T f (put<Pt - Tux0t) dxdi+ f' fa^x, 0)dx = 0 (29) 

is identically satisfied for all continuous 4>(x, i) equal to zero for x = 0, 

x = I and t = T. Here the functions u and must both have first deriv¬ 

atives whose squares are integrable in the sense of Lebesgue on the 

rectangle 0 ^ ^ O^r^T. This last requirement for u means that 

the mean value with respect to time of the total energy of the string 

2y Jo /o (P“? + Tul)dx dt 

must be finite. Such a restriction on the function u, and thus also on its 

possible variations <P, is a natural result of Hamilton’s principle. 

The identity (29) is precisely the condition that the first variation of 

the functional 

S = -L("f ^ ~ T "*) ^dt + J0^>“\>-°dx 

be equal to zero. Thus the problem of the vibration of a fixed string in 

the case considered may be stated as the problem of finding the minimum 

of the functional 5 for all functions t) which are continuous, satisfy 

condition (27), and are equal to u(x, T) for i = T. Moreover, the desired 

function must satisfy the first of conditions (28). 

This modification of Hamilton’s principle allows us not only to widen 

the class of admissible solutions of equation (24) but also to state a well- 

defined boundary-value problem for them. 

The fact that these generalized solutions or some of their derivatives are 

not defined at all points of the space does not lead to any contradiction 

with experiment, as was repeatedly pointed out by N. M. Gjunter, whose 

investigations were chiefly instrumental in establishing a new point of 

view for the concept of the solution of an equation of mathematical 

physics. 

For example, if we wish to determine the flow of liquid in a channel, 

then in the classical presentation we must compute the velocity vector 

and the pressure at every point of the flow. But in practice we are never 

dealing with the pressure at a point but rather with the pressure on a certain 
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area and never with the velocity vector at a given point but rather with 

the amount of the liquid passing through some area in a unit of time. 

The definition of generalized solution thus proposes essentially the 

computation of just those quantities that have direct physical meaning. 

In order that a larger number of problems may be solvable, we must 

seek the solutions among functions belonging to the widest possible class 

of functions for which uniqueness theorems still hold. Frequently such a 

class is dictated by the physical nature of the problem. Thus, in quantum 

mechanics it is not the state function ip(x), defined as a solution of the 

Schrftdinger equation, that has physical meaning but rather the integral 

a, = Je^C*) <pr(x)dx, where the ip, are certain functions for which 

^•Pl^x < oo. Thus the solution ip is to be sought not among the twice 

continuously differentiable functions but among the ones with integrable 

square. In the problems of quantum electrodynamics, it is still an open 

question which classes of functions are the ones in which we ought to 

seek solutions for the equations considered in that theory. 

Progress in mathematical physics during the last thirty years has been 

closely connected with this new formulation of the problems and with 

the creation of the mathematical apparatus necessary for their solution. 

One of the central features of this apparatus is the so-called embedding 

theorem of S. L. Sobolev. 

Particularly convenient methods of finding generalized solutions in one 

or another of these classes of functions are: the method of finite differences, 

the direct methods in the calculus of variations (Ritz method and Trefftz 

method), Galerkin’s method, and functional-operator methods. These 

latter methods basically depend on a study of transformations generated 

by these problems. We have already spoken in §5 of the method of finite 

differences and of Galerkin’s method. Here we will explain the basic ideas 

of the direct methods of the calculus of variations. 

Let us consider the problem of defining the position of a uniformly 

stretched membrane with fixed boundary. From the principle of minimum 

potential energy in a state of stable equilibrium the function m(x, y) must 

give the least value of the integral 

J(u) = JJ («4 + u\) dx dy 
D 

in comparison with all other continuously differentiable functions v(x, y) 

satisfying the same condition on the boundary, i;|s = cp, as the function u 

does. With some restrictions on <p and on the boundary 5 it can be shown 

that such a minimum exists and is attained by a harmonic function, so 

that the desired function u is a solution of the Dirichlet problem 
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Au = 0, «|s = <f>. The converse is also true: The solution of the Dirichlet 

problem gives a minimum to the integral J with respect to all v satisfying 

the boundary condition. 

The proof of the existence of the function u, for which J attains its 

minimum, and its computation to any desired degree of accuracy may be 

carried out, for example, in the following manner (Ritz method). We 

choose an infinite family of twice continuously differentiable functions 

{v„(x,y)},n = 0, 1, 2, ••-.equal to zero on the boundary for n > 0 and equal 

to tj> for n = 0. We consider J for functions of the form 

V~T/ CkVk + ‘’o ’ 
k-1 

where n is fixed and the Ck are arbitrary numbers. Then J(v) will be a 

polynomial of second degree in the n independent variables C,, C2, •••, C„ . 

We determine the C* from the condition that this polynomial should 

assume its minimum. This leads to a system of n linear algebraic equations 

in n unknowns, the determinant of which is different from zero. Thus the 

numbers C* are uniquely defined. We denote the corresponding v by 

v"(x, y). It can be shown that if the system {i>„} satisfies a certain condition 

of “completeness” the functions vn will converge, as n -*■ oo, to a function 

which will be the desired solution of the problem. 

In conclusion, we note that in this chapter we have given a description 

of only the simplest linear problem of mechanics and have ignored many 

further questions, still far from completely worked out, which are 

connected with more general partial differential equations. 
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CHAPTER VII 
CURVES 

AND SURFACES 

§1. Topics and Methods in the Theory of Curves and Surfaces 

In a school course, geometry involves only the simplest curves: straight 

lines, broken lines, and circumferences and arcs of circles; and as for 

surfaces, merely planes, surfaces of polyhedra, spheres, cones, and 

cylinders. In more extended courses other curves are considered, chiefly 

the conic sections: ellipses, parabolas, and hyperbolas. But the study of 

an arbitrary curve or surface is completely alien to elementary geometry. 

At first sight it is even unclear how any general properties could be 

selected for investigation when we are speaking of arbitrary curves 

and surfaces. Yet such an investigation is completely natural and 

necessary. 

In every kind of practical activity and experience of nature, we con¬ 

stantly encounter curves and surfaces of widely different forms. The path 

of a planet in space, of a ship at sea, or of a projectile in the air, the 

track of a chisel on metal, of a wheel on the road, of a pen on the tape 

of a recording device, the shape of a camshaft governing the valves of a 

motor, the contours of an artistic design, the form of a dangling rope, 

the shape of a spiral spring coiled for some specific purpose, such examples 

are endless. The surfaces of various objects, thin shells, cisterns, the 

framework of an airplane, casings, sheetlike materials, provide an endless 

diversity of surfaces. Methods for the processing of products, the optical 

properties of various objects, the streamlining of bodies, the rigidity or 

deformability of thin shells, these and many other features depend to a 

great extent on the geometric form of the surfaces of objects. 

Of course, the gouge left by a chisel on metal is not a mathematical 

57 
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curve. A cistern, even with thin walls, is not a mathematical surface. 

But to a first approximation, which is sufficient for the study of many 

questions, actual objects may be represented mathematically by curves 

and surfaces. 

In introducing the concept of a mathematical curve, we disregard all 

the reasons why we cannot decrease the thickness without limit. By 

means of this abstract concept, we succeed in representing those (com¬ 

pletely concrete) properties of an object that are preserved when its 

thickness and breadth are decreased in comparison with its length. 

Similarly, if we disregard the limitations on our ability to decrease 

the thickness of a shell or to determine precisely the actual boundaries 

of a given object, we are led to the concept of a mathematical surface. 

We will not give a rigorous description of these well-known concepts 

but will only remark that the exact mathematical definitions are not 

simple and belong to topology. 

Finally, an important source of interest in various curves and surfaces 

has been the development of mathematical analysis. It is sufficient to 

remember, for example, that a curve is the geometric representation of 

a function, which is the most important concept of analysis. Moreover, 

every one is familiar with graphs quite apart from any study of analysis. 

In elementary geometry as created by the ancient Greeks, there was 

nothing about arbitrary curves or surfaces, but even in elementary analytic 

geometry we are accustomed to say “every curve is represented by an 

equation” or “every equation in the two variables x and y represents 

a curve in the coordinate plane.” Similarly the coordinates of surfaces 

are given by the equations z = ffx, y) or F(x, y, z) = 0, and in general 

the coordinate method, by establishing a close connection between 

elementary geometry and analysis, enables us to define many different 

curves and surfaces. 

But analytic geometry, being restricted to the methods of algebra and 

elementary geometry, goes no further than the investigation of certain 

specific types of figures. The study of arbitrary curves and surfaces 

represents a new branch of mathematics, known as differential 

geometry. 

It must be admitted at once that differential geometry imposes on its 

curves and surfaces certain conditions arising from the methods of 

analysis. However, this is not an essential limitation on the diversity of 

the allowable curves and surfaces, since in the great majority of cases 

they are capable of representing actual objects with the necessary degree 

of precision. The name “differential geometry” itself gives an indication 

of the methods of the theory; its basic tool is the differential calculus 

and it primarily investigates the “differential” properties of the curves 
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and surfaces, i.e., their properties “at a point.”* Thus, the direction of 

a curve at a point is determined by its tangent at that point and the 

amount by which it twists is described by its curvature (the exact definition 

of this term will be given below). Differential geometry investigates the 

properties of small segments of curves and surfaces and only in its later 

developments does it proceed to the study of their properties “in the 

large,” i.e., in their entire extent. 

The development of differential geometry is inseparably connected 

with the development of analysis. The basic operations of analysis, 

namely differentiation and integration, have a direct geometric meaning. 

As was mentioned in Chapter II, differentiating a function f(x) corresponds 

to drawing a tangent to the curve 

y =/(*)• 

The slope of the tangent line (i.e., 

the trigonometric tangent of the 

angle it makes with the axis Ox) is 

precisely the derivative f'(x) of the 

function J{x) at the corresponding 

point (figure 1), and the area “under 

the curve” 

y-Ax) Fig. 1. 

is precisely the integral J\x) dx of 

this function, evaluated between the corresponding limits. Just as in analysis 

we investigate arbitrary functions, so in differential geometry we examine 

arbitrary curves and surfaces. In analysis, the first object of study is the 

general course of a curve on a plane, its rise and fall, its greater or smaller 

curvature, the direction of its convexity, its points of inflection, and so 

forth. The close connection between analysis and the curves is indicated 

by the name of the first textbook in analysis, by the French mathematician 

l’Hopital in 1695: “Infinitesimal analysis applied to the study of curves.” 

By the middle of the 18th century, the differential and integral calculus 

had been sufficiently developed by the immediate successors of Newton 

and Leibnitz that the way was open for more profound applications to 

geometry. Indeed, it is only from this moment that one may properly 

* The properties of curves and surfaces “at a point" are those properties that depend 
only on an arbitrarily small neighborhood of the point. Properties of this sort are 
defined in terms of the derivatives (at the given point) of the functions occurring in the 
equations of the curve or surface. It is for this reason that differential geometry imposes 
conditions guaranteeing that the differential calculus is applicable: it is required that 
the curve or surface be defined by functions with a sufficient number of derivatives. 
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speak of a theory of curves and surfaces. For surfaces, and for curves 

in space, the analogous problems are immeasurably richer in content 

than for plane curves, so that with the passage of time these problems 

outgrew the framework of a simple application of analysis to geometry 

and led to the formation of an independent theory. During the second 

half of the 18th century, many mathematicians shared in building up 

the elements of this theory: Clairaut, Euler, Monge, and others, among 

whom Euler must be considered as the founder of the general theory 

of surfaces. The first comprehensive work on curves and surfaces was 

the book of Monge “Application of analysis to geometry,” published in 

1795.* From the investigations of these mathematicians, and, in particular, 

from the book of Monge, we can easily understand the upsurge of interest 

in differential geometry. This upsurge was due to the demands of me¬ 

chanics, physics, and astronomy, i.e., in the final analysis to the needs 

of technology and industry, for which the available results of elementary 

geometry were completely insufficient. 

The classical work of Gauss (1777-1855) in the theory of surfaces is 

also related to practical questions. His “General investigations concerning 

curved surfaces,” published in 1827, is basic for the differential geometry 

of surfaces as an independent branch of mathematics. His general methods 

and problems, discussed later in §4, originated to a great degree in the 

practical needs of map making. The problem of cartography consists of 

finding as exact a representation as possible of parts of the surface of 

the earth on a plane. A completely exact representation here is impossible, 

the mutual relations of various lengths being necessarily distorted because 

of the curvature of the earth. Thus one has the problem of finding the 

most nearly exact methods possible. The drawing of maps goes back to 

remote antiquity, but the creation of a general theory is an achievement 

of recent times and would not have been possible without the general 

theory of surfaces and the general methods of mathematical analysis. 

We note that one of the difficult mathematical problems of cartography 

was investigated by P. L. Cebysev (1821-1894), who obtained important 

results relating to nets of curved lines on surfaces. His investigations also 

arose from purely practical problems. 

The general questions of deforming one surface so that it can be mapped 

on another still constitute one of the main branches of geometry. Important 

results in this direction were obtained in 1838 by F. Minding (1806-1885), 

professor at the University of Dorpat (now Tartu). 

* Gaspard Monge (1746-1828) was not only an outstanding scientist but also an 
active French revolutionary (minister of naval affairs, and then director of the manu¬ 
facture of cannon and powder). He followed the path, characteristic of the French 
bourgeois of the time, from Jacobin to adherent of the emperor Napoleon. 
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By the second half of the last century, the theory of curves and surfaces 

was already well established in its basic features, provided we are speaking 

of “classical differential geometry” in contrast with the newer directions 

discussed later in §5. The basic equations in the theory of curves, namely 

the so-called Frenet formulas, had already been obtained, and in 1853 

K. M. Peterson (1828-1881), a student of Minding’s at Tartu University, 

discovered and investigated in his dissertation the basic equations of the 

theory of surfaces, rediscovered 15 years later and published by the 

Italian mathematician Codazzi, with whose name these equations are 

usually associated. Peterson, after graduating from the university at 

Tartu, lived and worked in Moscow, as a teacher in a gymnasium. 

Though he never held any academic position corresponding to his 

outstanding scientific achievements, he was nevertheless one of the 

founders of the Moscow Mathematical Society and of the journal 

“MatematiCeskil Sbornik,” published in Moscow from 1866 up to the 

present day. The Moscow school of differential geometry begins with 

Peterson. 

The results to date of the “classical” differential geometry were sum¬ 

marized by the French geometer Darboux in his four-volume “Lectures 

on the general theory of surfaces,” issued from 1887 to 1896. In the 

present century classical differential geometry continues to be studied, 

but the center of interest in curves and surfaces has largely shifted to 

new directions in which the class of figures under study has been even 

more widely extended. 

§2. The Theory of Curves 

Various methods of defining curves in differential geometry. From 

analysis and analytic geometry we are accustomed to the idea of defining 

curves by means of equations. In a rectangular coordinate system on the 

plane, a curve may be given either by the equation 

y = Ax), 

or by the more general equation 

F(x,y) = 0. 

However, this method of definition is suitable only for a plane curve, 

i.e., a line in the plane. We also require a method of writing equations 

of space curves not lying in any plane. An example of such a curve 

may be seen in the helix (figure 2). 
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For the purposes of differential geometry, and for many other questions 

as well, it is most convenient to repre¬ 

sent a curve as the trace of a continuous 

motion of a point. Of course, the given 

curve may have originated in some 

entirely different way, but we can always 

think of it as the path of a point 

moving along it. 

Let us assume that we have a fixed 

Cartesian coordinate system in space. If 

a moving point X traces out a curve 

from time t — a to t = b, then the 

coordinates of this moving point are 

given by the functions of the time 

x(t), y(t), and z(r); the flight of an 

airplane or a projectile are examples. 

Conversely, if we are initially given 

the functions x(t), y(t), and z(r), we 

may let them define the coordinates of a moving point X, which traces 

out some curve. Consequently, curves in space may be given by three 

equations of the form 

* = *('). y = ><'). 2 = Hr). 

In the same way a plane curve is defined by two equations 

x = x(t), y - y(r). 

This is the most general manner of defining curves. 

As an example we consider the helix. It is produced by the spiral 

motion of a point that revolves uniformly around a straight line, the axis 

of the helix, and at the same time moves uniformly in a direction parallel 

to this axis. Let us take the axis of the helix as the axis Oz and suppose 

that at time / = 0 the point lies on the axis Ox. We now wish to find 

how its coordinates depend on the time. If the motion parallel to the 

axis Oz has velocity c, then obviously the distance travelled in this direction 

at time t will be 

z = cl. 

Also, if <f> is the angle of rotation around the axis Oz and a is the distance 

from the point to this axis, then, as can be seen in figure 2, 

x = a cos <f>, y = a sin <f>. 
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Since the rotation is uniform, the angle <j> is proportional to time; that is, 

<f> = uii, where oj is the angular velocity of the rotation. In this manner 

we get 

x = a cos cor, y = a sin cot, z = ct. 

So these are the equations of the helix, which as t changes will be traced 

out by the moving point. 

Of course the variable t or, as it is usually called, the parameter, need 

not be thought of as representing the time. Also, the given parameter r 

may be replaced by another; for example we may introduce a parameter u 

by the formula r = u3. or, in general, by t = /(«).* In geometry the most 

natural choice of parameter is the length s of the arc of the curve measured 

from some fixed point A on it. Every possible value of the length s 

represents a corresponding arc AX. Thus the position of X is fully 

determined by the value of s and the coordinates of the point X are given 

by the functions of arc length s 

x = x{s), y = ><j), r = z(.r). 

All these ways of defining curves, as well as other possible ones.t open 

up the possibility of numerical computation. Only when curves have 

been defined by equations can their properties be investigated by mathe¬ 

matical analysis. 

In the differential geometry of plane curves, there are three basic 

concepts; length, tangent, and curvature. For space curves, there are in 

addition the osculating plane and the torsion. We now proceed to explain 

the meaning and significance of these concepts. 

Length. Everyone has in mind a natural idea of what is meant by 

length, but this idea must be converted into an exact definition of the 

length of a mathematical curve, a definition with a specific numerical 

character, which will enable us to compute the length of a curve with 

any desired degree of accuracy and consequently to argue about lengths 

in a rigorous way. The same remarks apply to all mathematical concepts. 

The transition from informal ideas to exact measurements and definitions 

represents the transition from a prescientific understanding of objects to 

* Here, strictly speaking, it is necessary that the function / be monotone. 
t A curve in space may also be given as the intersection of two surfaces, defined 

by the equations: F(x, y, z) - 0, G(x, y, z) = 0, i.e., the curve is given by this pair of 
equations. In theoretical discussions a curve is most frequently given by a variable 

vector, i.e., the position of the point X of the curve is defined by the vector r — OX, 
extending from the origin to this point. As the vector r changes, its end point X moves 
along the given curve (figure 3). 
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a scientific theory. The need for a precise definition of length arose in 

the final analysis from the requirements of technology and the natural 

sciences, whose development demanded investigation of the properties of 

lengths, areas, and other geometric entities. 

Fig. 3. Fig. 4. 

A simple and most useful definition of length is the following: The 

length of a curve is the limit of the length of broken lines inscribed in 

the curve under the condition that their vertices cluster closer and closer 

together on the curve. 

This definition arises naturally from our everyday methods of measuring. 

On the curve we take a sequence of points A0, A,, At, ■ ■ • (figure 4) 

and measure the distances between them. The sum of these distances 

(which is the length of the broken line) expresses approximately the 

length of the curve. In order to define the length more exactly, it is natural 

to take the points A closer together, so that the broken line follows 

the twists of the curve more closely. Finally, the exact value of the length 

is defined as the limit of these approximations as the points A are chosen 

arbitrarily close together.* Thus the earlier definition of length is a 

generalization, based on taking finer and finer steps, of a completely 

practical manner of measuring length. 

From this definition of length, it is easy to derive a formula for com¬ 

puting lengths when the curve is given analytically. We note, however, 

that mathematical formulas are useful for more than just computation. 

* The existence of the indicated limit, i.e., the length of the curve, is not initially 
clear, even for curves lying in a bounded domain. If the curve is very twisted, its length 
may be very great, and it is possible mathematically to construct a plane curve which 
is so “twisted” that none of its arcs has a finite length since the lengths of broken lines 
inscribed in it increase beyond all bounds. 
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They are a brief statement of theorems that establish connections between 

different mathematical entities. The theoretical significance of such 

connections may far ex¬ 

ceed the computational 

value of the formula. For 

example, the importance 

of the Pythagorean theo¬ 

rem, expressed by the 

formula 

c* = a2 + b\ 

is not confined to the 

computation of the 

square of the hypotenuse 

c but lies chiefly in the 

fact that it expresses a 

relation among the sides of a right triangle. 

Let us now introduce a formula for the length of a plane curve, given 

in Cartesian coordinates by the equation y = /(x), assuming that the 

function /(x) has a first derivative. 

We inscribe a broken line in the curve (figure 5). Let A„, An+l be two 

of its adjacent vertices with coordinates x„ , y„ and xn+1, yn+,. The line 

segment A„An+1 is the hypotenuse of a right triangle the legs of which 

are equal to 

Ax„ = I x„+1 — xn |, Ayn = | yn+l — yn |. 

Thus, by the Pythagorean theorem, 

AnA„ti = V(Jx„)* 4- (Ay„Y = yj 1 + (-^-) Ax„ . 

It is easy to see that if the straight line drawn through the points A„ 

and A„+i is translated parallel to itself, then at the instant when the line 

leaves the curve it will assume the position of a tangent to this curve 

at some point B, i.e., on the arc of the curve A„A„+1, there is at least 

one point at which the tangent has the same direction as the chord 

A„An+, . (This obvious conclusion can easily be given a rigorous proof.) 

Thus we may replace the ratio AyjAx„ by the slope of the tangent 

at B, i.e., by the derivative /(£„). where is the abscissa of the point B. 

Now the length of one link of the broken line is expressed by 

Fig. 5. 

A„A„tl = V1 + y'H.L) Axn . 
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The entire length of the broken line is the sum of the lengths of its pieces. 

Denoting the addition by the symbol L, we have 

Su = X '/i +y'*(L)Ax„. 

To obtain the length of the curve, we must pass to the limit under 

the condition that the greatest of the values Ax„ tends to zero, 

S = 2) ^1 + /*(£•) Axn • 

But this limit is exactly the integral defined in Chapter II, namely the 

integral of the function V1 + y'*. Thus the length of a plane curve is 

expressed by the formula 

= f ViTyTdx, (1) 
J a 

where the limits of integration a and b are the values of x at the ends 

of the arc of the curve. 

The corresponding, but somewhat different, formula for the length of 

a space curve is derived in basically the same way. 

The actual computation of a length by means of these formulas is, 

of course, not always simple. Thus the calculation of the circumference 

of a circle from formula (1) is rather complicated. However, as we have 

said, the interest of formulas is not confined to computation; in particular, 

formula (1) is also important for investigating the general properties of 

length, its relations with other concepts, and so forth. We will have an 

opportunity to make use of formula (1) in Chapter VIII. 

Tangent. The tangent to a plane curve was already considered in 

Chapter II. Its meaning for a space curve is completely analogous. In 

order to define the tangent at a point A, we choose a point X on the 

curve, distinct from A, and consider the secant AX. Then we allow X to 

approach A along the curve. If the secant AX converges to some limiting 

position, then the straight line in this limiting position is called the tangent 

at the point A.* 

If we distinguish between the initial point and the end point of the 

curve and thereby establish an order in which the points of the curve 

* The limiting position of the secant may not exist, as can be seen from the example 
in figure 13, Chapter II. The curve represented by y = x sin l/x oscillates near zero 
in such a way that the secant OA, as A approaches O, constantly oscillates between 
the straight lines OM and OL. 



§2. THE THEORY OF CURVES 67 

are traversed, then we may say which of the points A and X comes first 

and which comes second. (For example, if a train travels from Moscow 

to Vladivostok, then Omsk obviously precedes Irkutsk.) So we may 

define a direction along the secant from the first point to the second. 

The limit of such “directed secants” gives us a “directed tangent.” In 

figure 6, the arrow shows the direction in which the point A is passed 

through. For the motion of a point along the curve, the velocity at each 

instant is directed along the tangent to the curve. 

The tangent has an important geometric property: Near the point of 

tangency the curve departs less, in a well-defined sense, from this straight 

line than from any other. In other words, the distance from the points 

of the curve to the tangent is very small in comparison with their distance 

to the point of tangency. More precisely, the ratio XX"/AX (figure 7) 

tends to zero as X approaches A.* So a small segment of the curve may 

be replaced by a corresponding segment of the tangent with an error 

that is small in comparison with length of the segment. This procedure 

often allows us to simplify proofs, since in a passage to the limit it gives 

completely exact results. 

It is interesting to observe that for a curve which is not a straight line, 

i.e., does not have a direction in the elementary sense, we have been 

able, by associating it with a straight line, to define its direction at each 

point. Thus the concept of direction has been extended; it has been given 

a meaning which it did not previously have. This new concept of direction 

reflects the actual nature of motion along a curve; at each instant the 

point is moving in some definite direction, which changes continuously. 

* This result follows immediately from the definition of the tangent itself. Evidently, 
as is shown in figure 7, XX'/AX — sin a, where a is the angle between the tangent and 
the secant AX. Thus, as a — 0, XX'IAX also tends to zero. 
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Curvature. To be able to judge by eye whether a path, a thin rod, 
or a line in a drawing is more or 
less curved it is not necessary to 
be a mathematician. But for even 
the simplest problems of me¬ 
chanics, a casual glance is not 
sufficient; we need an exact quan¬ 
titative description of the curva¬ 
ture. This is obtained by giving 
precise expression to our intuitive 
impression of the curvature as 
the rapidity of change of direction 

of the curve. 
Let A be a point on the curve and M a point near A (figure 8). The 

angle between the tangents at these points expresses how much the curve 
has changed direction in the segment from A to M. Let us denote this 
angle by <f>. The average rate of change of direction (more precisely, the 
average change per unit length of path along the segment A M of length As) 
will obviously be <f>/As. Then the curvature, namely the rate of change 
of direction of the curve at the point A itself, is naturally defined as the 
limit of the ratio <f>/As as M -*■ A ; in other words, as As -*■ 0. Thus the 
curvature is defined by the formula 

k = lim -j-. 
a»-*o 

As a particular example, let us consider the curvature of the circum 
ference of a circle (figure 9). 
Obviously, the angle <f> between 
the radii OA and OM is equal 
to the angle <f> between the 
tangents at the points A and M, 
since the tangents are perpen¬ 
dicular to the radii. The arc 
AM, subtending the angle 4>, 
has length As — <f>r, so that 

i. = I 
As r' 

A 

This means that the ratio <f>/As 
is constant, so that the curvature of the circumference of a circle, as the 
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limiting value of this ratio, is equal at all points to the reciprocal of the 

radius.* 

Let us derive the formula for the curvature of a plane curve given by 

the equation y = f(x). As the initial point for arc length we take a fixed 

point N (figure 10). The angle <f> between the tangents at the points A 

and M is obviously equal to the difference in the angle of inclination of 

the tangents at A to M. 

<f> = | A<x |. 

Since the angle a may decrease, we take the absolute value | A a |. 

We are interested in the value 

• k = lim -r— 
a»-*o ds 

= lim 
Me | 

As 

I Aa | 

lim 
J*--0 

Ax 

As_ 

Ax 

The length of the arc of the curve NA is expressed by the integral 

j = I-* Vl + /* dx, 
J a 

so that 

s' = V1 + /*. 

* Wc note that in general the concept of the curvature of a curve at a point may be 
defined by comparing the curve with the circumference of a certain circle, which plays 
the role of a model or standard for the curvature. For in fact, the curvature of the 
given curve proves to be equal to the reciprocal of the radius of the (unique) circle 
which fits the curve most closely in the neighborhood of the point. 
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It remains to find a'. We know that tan a = y'\ thus a = arc tan/. 

Differentiating this last equation with respect to x, we get 

Thus, finally 

a 

l«| = \y'\ 

s' “ (1 + y'2Y'2' 

The corresponding formulas for other methods of representing plane and 

space curves are given in the usual courses in analysis or differential 

geometry. 

This formula allows us to give another 

geometric interpretation of curvature, which 

is useful in many questions. Namely, the 

curvature of a curve at a point is given by 

the formula 

i r 2h Ar = hm — , 
i-o /2 

where h is the distance of a second point on the curve to the tangent 

at the given point and / is the length of the segment of the tangent between 

the point of tangency and the projection on the tangent of the other 

point on the curve (figure II). 

To prove this we choose a rectangular coordinate system such that 

the origin falls at the given point of the curve and the axis Ox is tangent 

to the curve at this point (figure II). (For simplicity we assume that the 

curve is plane.) Then y' = 0 and k = |y" |. Expanding the function 

y = f(x) by Taylor’s formula, we get y = ^y’x* + tx2 (where we have 

taken into account that y' = 0). Here e -+ 0 as x -* 0. Hence it follows 

that k = | y" | = lim,_0 2 | y |/x*, and thus, since | y | = h, x* = /*, we 

have 

i i- 2h k = lim — . 
i-o /* 

This formula shows that the curvature describes the rate at which the 

curve leaves the tangent. 

Let us now turn to some very important applications of curvature to 

problems of mechanics. 

First we consider the following problem. Let a flexible string be 

stretched over a support (figure 12) in such a way that the string remains 
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in one plane. We wish to find the pressure of the string on the support 

at every point, or to be more exact, to define the limit 

P = 
.. P 
hm —, 

j»-*o As 
(2) 

where P is the magnitude of the force P acting on the support along 

a piece of length As containing the given point. We assume for simplicity 

that the magnitude T of the tension T is the same at all points of the 

string. 

T 

Now consider the point A and a segment of the string AB.* On this 

segment AB of length As, in addition to the reaction of the support, 

only two external forces are acting, namely the tensions at the ends, 

which are equal in magnitude and are directed along the tangents at the 

ends of the segment. Thus the force P exerted by the string on the support 

is equal to the geometric sum of the tensions at the ends. As can be 

seen from figure 12, the vector P is the base AD of the iscosceles triangle 

CAD. The two equal sides of this triangle have length T and the angle 

at the vertex C is equal to the change of direction of the tangent in passing 

from A to B. 
With decreasing As the angle <f> decreases and the angle between P 

and the tangent at the point A approaches a right angle. Thus the pressure 

is perpendicular to the tangent. 

To find the magnitude of the pressure, we make use of the fact that 

a small arc of the circumference has approximately the same length as 

* It would be more natural to choose a segment with the point A in its interior; 
this would not change the result but would make the computation somewhat more 
complicated. 
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the chord subtending it. Thus we replace the length of the chord AD, 
i.e., the magnitude P, by the length T<f> of the arc AD. Then by formula (2) 

we get 
P T<t> J> 

p — lim -j— = lim —r— = T lim -r— = Tk. 
a»--o As As <3*-o As 

Hence the pressure at each point is equal to the product of the curvature 

and the tension on the string and is exerted perpendicularly to the tangent 

at this point. 

Consider a second problem. Let a mathematical point (i.e., a very 

small body) move along a plane curve with a velocity of constant mag¬ 

nitude v. What is its acceleration at a given point A? By definition, the 

acceleration is equal to the limit of the ratio of the change in velocity 

(during the time At) to the increment At of the time. The velocity involves 

not only magnitude but also direction, i.e., we consider the change in 

the velocity vector. Therefore the mathematical problem of finding the 

magnitude of the acceleration consists of finding the limit 

» = lim !.?(; + 
a<- o At 

where v(t) is the velocity at the point A itself, and | v(t + At) — v(t)| is 

the length of the vector difference of the velocities. The limit which 

concerns us may also be represented as 

lim I .-«<<>+*'+ Hmiji-, 
As Jf-o At 

'(t) 

Fig. 13. 
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where As is the length of the arc AB traversed during time At. Turning 

to figure 13 and noting that the velocity at each point is directed along 

the tangent while remaining constant in magnitude, we see geometrically 

that finding the sum — v(t) + v(t + At) is identical with finding the 

vector P in the preceding problem. So we may avail ourselves of the 

result there and, replacing tension by velocity, write 

Hm I -*> + *t + A) I _ vh 
J>-0 JS 

Moreover, limJ(_0 As/At = v. So we have the final result that the 

acceleration of a body in uniform motion along the curve is equal to 

the product of the curvature and the square of the velocity 

h' = kv* (3) 

and is directed along the normal to the curve, i.e., along a straight line 

perpendicular to the tangent. 

Our recourse here to a geometric analogy, enabling us to use the 

solution of the problem of the pressure exerted by a string in order to 

solve a problem of the acceleration of a particle, shows once again how 

useful it is to make an abstraction from the particular concrete properties 

of a phenomenon to corresponding mathematical concepts and results; 

for we can then make use of these results in the most varied situations. 

We also note that the curvature, which from a mechanical point of 

view reflects the change in the direction of motion, is seen to be closely 

connected with the forces causing this change. The equation which 

expresses this connection is easily derived if we multiply equation (3) 

by the mass m of the moving point. We have 

Fn = mw = v2mk. 

Here F„ is the magnitude of the normal component of the force acting 

on the point. 

Osculating plane. Although a space curve does not lie in one plane, 

still with each point A of the curve it is possible, as a rule, to associate 

a plane P which in the neighborhood of this point lies closer to the curve 

than any other plane. This plane is called the osculating plane of the 

curve at the point. 

Naturally the osculating plane, as the plane closest to the given curve, 

passes through the point A and contains the tangent T to the curve. 

But there are many planes containing the point A and the straight line T. 
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In order to choose from among them the one plane that least deviates 

from the curve, we investigate the deviation of the curve from the tangent. 

For this purpose let us see how the curve runs along the tangent T; 
in other words, let us project our curve onto the normal plane Q, which 

is perpendicular to T at the point A 
(figure 14). The projection on the 

plane Q of a segment of our curve 

containing A forms a new curve, 

indicated in figure 14 by a dotted 

line. Usually it has a cusp at the 

point A. If the curve so obtained 

has a tangent N at the point A, then 

the plane P determined by T and N 
will naturally be closest to the 

original curve in the neighborhood 

of the point A, i.e., it will be the 

osculating plane at the point A. It may be shown that when the functions 

defining the original curve have second derivatives and the curvature of 

the curve at the point A is not zero, then the osculating plane necessarily 

exists, and its equation may be expressed very simply in terms of the 

first and second derivatives of the functions defining the curve. 

We saw earlier that the properties of the tangent allow us to consider 

a small segment of a plane curve as though it were straight, thereby 

making an error which is small in comparison with the length of the 

segment; similarly the properties of the osculating plane allow us to 

consider a small segment of a space curve as though it were a plane 

curve, namely its projection on the osculating plane, and here the error 

will be small in comparison with the square of the length of the segment 

of the curve. 

There are many straight lines in space that are perpendicular to the 

tangent; they form the normal plane at the given point of the curve. 

Among these straight lines there is one, the line N, which lies in the 

osculating plane. This line is called the principal normal to the curve. 

Usually we also fix a direction for it, namely the direction of the con¬ 

cavity of the projection of the curve on the osculating plane. The principal 

normal plays the same role for a space curve as the ordinary (unique) 

normal for a plane curve. In particular, if a thin string under tension T 
is stretched in the form of a space curve over a support, then the pressure 

of the string on the support has at each point the magnitude Tk and is 

directed along the principal normal. If a material point is moving along 

a space curve with a velocity of constant magnitude v, then its acceleration 

is equal to kiP and is directed along the principal normal. 
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Torsion. From point to point along a curve the position of the 

osculating plane will probably change. Just as the rate of change of 

direction of the tangent characterized the curvature, so the rate of change 

of direction of the osculating plane characterizes a new quantity, the 

torsion of the curve. Here, as in the case of curvature, the rate is taken 

with respect to arc length; that is, if <p is the angle between the osculating 

planes at a fixed point A and at a nearby point X, and if As is the length 

of the arc AX, then the torsion r at the point A is defined as the limit* 

J, 
t = lim — . 

j«-.o As 

The sign of the torsion depends on the side of the curve toward which 

the osculating plane turns as it moves along the curve. 

We may imagine the osculating curve as the blade of a fan with the 

two lines, the tangent and the principal normal, drawn on it. At each 

moment the tangent is turning in the direction of the normal at a rate 

determined by the curvature, while the osculating plane rotates around 

the tangent with a speed and direction determined by the torsion. 

The simplest results of the theory of differential equations may be used 

to prove a fundamental theorem that states, roughly speaking, that two 

curves with the same curvature and the same torsion are identical with 

each other. Let us make this idea clearer. If we move along the curve 

to various distances A from our initial point, we will arrive at points 

where the curvature k and the torsion r will have various values, depending 

on s. Thus k(s) and t(s) will be certain well-defined functions of the arc 

length s. 

The theorem in question states that if two curves have identical 

curvature and torsion as functions of arc length, then the curves are 

identical (i.e., one of them may be rigidly moved so as to coincide with 

the other). In this manner curvature and torsion as functions of arc 

length define a curve completely except for its position in space; they 

describe all the properties of the curve by stating the relationship between 

its length, its curvature, and its torsion. In this way the three concepts 

constitute a sort of ultimate basis for questions concerning curves. With 

their help we can also express the simplest concepts in the theory of 

surfaces, to which we now turn. 

* It may be shown that a helix has the same torsion at all its points and consequently 
that we may define the torsion of a curve by comparing the curve with the (unique) 
helix which best approximates the curve in the neighborhood of the given point. The 
torsion also characterizes the way in which a given space curve differs from a plane 
curve. With a certain analogy to curvature, it characterizes the rate at which the curve 
leaves its osculating plane. 
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Of course, the theory of curves has not been exhausted by our present 

remarks. There are many other concepts relating to curves: special types 

of curves, families of curves, the position of curves on surfaces, questions 

of the form of a curve as a whole, etc. These questions and the methods 

of answering them are connected with almost every branch of mathe¬ 

matics. The range of problems that may be solved by the theory of 

curves is extremely rich and varied. 

§3. Basic Concepts in the Theory of Surfaces 

The basic methods of defining a surface. If we wish to study surfaces 

by means of analysis we must, of course, define them analytically. The 

simplest way is by an equation 

z = /(*. y), 

in which x, y, and z are Cartesian coordinates of a point lying on the 

surface. Here the function f(x, y) need not necessarily be defined for all 

x, y, its domain may have various shapes. Thus, the surface illustrated 

in figure 15 is given by the function /(*, y) defined inside an annulus. 

Examples of surfaces given by equations of the form z = f(x, y) are also 

familiar from analytic geometry. We know, for example, that the equation 

z = Ax 4- By + C represents a plane, and z = r1 + / a paraboloid of 

revolution (figure 16). For the application of differential calculus it is 

necessary that the function f(x, y) have first, second, and sometimes even 

higher derivatives. A surface given by such 

an equation is called regular. Geometrically 7 i 
this means (though not quite precisely) that ! 

Fig. 15. Fig. 16. 
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the surface curves continuously without breaks or other singularities. 

Surfaces that do not have this property, for example, those with cusps, 

breaks, or other singularities, require a new kind of investigation (cf. §5). 

However, not every surface, even without singularities, can be entirely 

represented by an equation of the form z = /(x, y). If every pair of 

values of x, y in the domain of /(x, y) gives a completely determined z, 
then every straight line parallel to the axis Oz must intersect the surface 

at no more than one point (figure 17). Even such simple surfaces as 

spheres or cylinders cannot be represented in the large by an equation 

of the form z = f(x, y). In these cases the surface is defined in some 

other manner, for example by an equation of the form F(x, y, z) = 0. 

Thus a sphere of radius R with center at the origin has the equation 

x* + / + z* = R\ 

The equation x2 + y1 = r2 gives a cylinder of radius r. 

So when the investigation is concerned only with small segments of the 

surface, as is usually the case in classical differential geometry, the 

definition of a surface by an equation z =f{x,y) is perfectly general, 

since every sufficiently small segment of a smooth surface can be rep¬ 

resented in this form. We take this way as basic, and leave other methods 

of defining surfaces to be considered later in §§4 and 5. 

Tangent plane. Just as at each point a smooth curve has a tangent 

line which is close to the curve in a neighborhood of the point, so also 

surfaces may have, at each of their points, a tangent plane. 



78 VII. CURVES AND SURFACES 

The exact definition is as follows. A plane P, passing through a point M 

on a surface F, is said to 

be tangent to the surface 

Fat this point if the angle 

a between the plane P and 

the secant MX, drawn 

from M to a point X of 

the surface, converges to 

zero as the point X ap¬ 

proaches the point M 
(figure 18). All tangents 

to curves passing through 

the point M and lying 
on the surface obviously lie in the tangent plane. 

A surface F is called smooth if it has a tangent plane at each point 

and if, as we pass from point to point, the position of this plane varies 
continuously. 

Near the point of tangency, the surface departs very little from its 

tangent plane: If the point X approaches the point M along the surface, 

then the distance of the point X from the tangent plane becomes smaller 

and smaller, even in comparison with its distance from the point M 
(the reader can easily verify this by considering how X approaches M 
in figure 18). In this way, the surface near the point M may be said to 

merge into the tangent plane. In the first approximation a small segment 

or, as it is called, an “element” of the surface may be replaced by a 

segment of the tangent plane. The perpendicular to the tangent plane 

which passes through the point of tangency acts as a perpendicular to 

the surface at this point and is called a normal. 
This possibility of replacing an element of the surface by a segment 

of the tangent plane is useful in many situations. For example, the 

reflection of light on a curved surface takes place in the same way as 

the reflection on a plane, i.e., the direction of the reflected ray is defined 

by the usual law of reflection: The incident ray and the reflected ray 

lie in one plane together with the normal to the surface and they make 

equal angles with this normal (figure 19), just as if the reflection were 

occurring in the tangent plane. Similarly for the refraction of light in 

a curved surface, each ray is refracted by an element of the surface with 

the usual law of refraction, just as if the element were plane. These facts 

are the basis for all calculations of reflection and refraction of light in 

optical apparatus. Further, for example, solid bodies in contact with 

each other have a common tangent plane at their point of contact. The 

bodies are in contact over an element of their surface, and the pressure 
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of one body on the other, in the absence of friction, is directed along 

the normal at the point of contact. This is also true when the bodies 

are tangent at more than one point, in which case the pressure is directed 

along the respective normals at each point of contact. 

The replacement of elements of a surface by segments of the tangent 

planes can also serve as the basis of a definition of the area of various 

surfaces. The surface is decomposed into small pieces F,, Ft, •••, F„ and 

each piece is projected onto a plane tangent to the surface at some point 

of this piece (figure 20). We thus obtain a number of plane regions 

Pj, Pt, •••, Pn , the sum of whose areas gives an approximation to the 

Fig. 20. 
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area of the surfaces. The area of the surface itself is defined as the limit 

of the sums of the areas of the segments Px,Pt, •••, Pn under the con¬ 

dition that the partitions of the surface become finer.* From this we can 

derive an exact expression for the area in the form of a double integral. 

These remarks clearly demonstrate the significance of the concept of 

the tangent plane. However, in many questions the approximate represen¬ 

tation of an element of a surface by means of a plane is inadequate and 

it is necessary to consider the curvature of the surface. 

Curvature of curves on a surface. The curvature of a surface at a 

given point is characterized by the rate at which the surface leaves its 

tangent plane. But in different directions, the surface may leave its tangent 

plane at different rates. Thus the surface illustrated in figure 21 leaves 

the plane P in the direction OA at a faster rate than in the direction OB. 
So it is natural to define the curvature of a surface at a given point by 

means of the set of curvatures of all curves lying in the surface and 

passing through the given point in different directions. 

Fig. 21. Fig. 22. 

This is done as follows. We construct the tangent plane P through 

the point M and choose a specific direction for the normal (figure 22). 

Then we consider curves which are sections of the surface cut by planes 

passing through the normal at the point M\ these curves are called 

normal sections. The curvature of a normal section is given a sign, which 

is plus if the section is concave in the direction of the normal and minus 

if it is concave in the opposite direction. Thus, in a surface which is 

saddle-shaped, as illustrated in figure 23 with the arrow indicating the 

This is exactly the expression for the area which was used in §1, Chapter Vlft. 
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direction of the normal to the surface, the curvature of the section MA 
is positive and that of the section MB is negative. 

A normal section is defined by the angle <f> by which its plane is rotated 

from some initial ray in the tangent plane (figure 22). If we know the 

curvature of the normal section k(<f>) in terms of the angle <f>, we will 

have a rather complete picture of the behavior of the surface in the 

vicinity of the point M. 
A" surface may be curved in many different ways and thus it would 

appear that the dependence of the curvature k on the angle <{> may be 

arbitrary. In fact this is not so. For the surfaces studied in differential 

geometry, there exists a simple law, due to Euler, that establishes the 

connection between the curvatures of the normal sections passing through 

a given point in various directions. 

It is shown that at each point of a surface there exist two particular 

directions such that 

1. They are mutually perpendicular; 

2. The curvatures A:, and k2 of the normal sections in these directions 

are the smallest and largest values of the curvatures of all normal sections;* 

3. The curvature k(<f>) of the normal section rotated from the section 

with curvature kt by the angle <f> is expressed by the formula 

k(<f>) = k2 cos* <f> + kt sin* <f>. (4) 

Such directions are called the principal directions and the curvatures 

and k2 are called the principal curvatures of the surface at the given 

point. 

This theorem of Euler shows that in spite of the diversity of surfaces, 

their form in the neighborhood of each point must be one of a very 

few completely defined types, with an accuracy to within magnitudes of 

the second order of smallness in comparison with the distance from the 

given point. In fact, if A:, and k2 have the same sign, then the sign of 

k(<f>) is constant and the surface near the point has the form illustrated 

in figure 22. If A:, and k2 have opposite signs, for example A:, > 0 and 

k2 < 0, then the curvature of the normal section obviously changes sign. 

This is seen from the fact that for <f> = 0 the curvature A: = A:, > 0 and 

for <f> = rr/2 we have k = k2 < 0. 

From formula (4) for k(<f>), it is not difficult to prove that as <f> changes 

*In the particular case *, = kt the curvature of all sections is the same; as, for 
example, on a sphere. 
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from 0 to -n the sign of k(<f>) changes twice,* so that near the point the 

surface has a saddle-shaped form (figure 23). 

When one of the numbers kt and is equal to zero, the curvature 

always has the same sign, except for the one value of «£, for which it 

vanishes. This occurs, for example, for every point on a cylinder (figure 24). 

In the general case the surface near such point has a form close to that 
of a cylinder. 

Finally, for A:, — kt = 0 all normal sections have zero curvature. 

Near such a point the surface is especially “close” to its tangent plane. 

Such points are called flat points. One example of such a point is given 

in figure 25 (the point M). The properties of a surface near a flat point 

Fig. 25. Fig. 26. 

*It is a simple matter to show that k(*f>) = k, cos2 j + k, sin8 4 vanishes for 

^ = arc tan V—kJkt and 4 — n — arc tan V—k,jkt, changing sign the first time 
from plus to minus and the second from minus to plus. 
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Let us now consider a section of the surface cut by an arbitrary plane Q 
(figure 26) not passing through the normal. The curvature kL of such a 

curve L, as Meusnier showed,* is connected by a simple relation with 

the curvature kN of the normal section in the same direction, i.e., the 

one that intersects the tangent plane in the same straight line. This 

connection is expressed by the formula 

where 9 is the angle between the normal and the plane Q. The correctness 

of this formula may be visualized very conveniently on a sphere. 

Finally, the curvature of any curve lying in the surface and having 

the plane Q as its osculating plane may be shown to be identical with 

the curvature of the intersection of Q with the surface. 

Thus, if we know A:, and kt , the curvature of any curve in the surface 

is defined by the direction of its tangent and the angle between its oscu¬ 

lating plane and the normal to the surface. Consequently, the character 

of the curvature of a surface at a given point is defined by the two numbers 

/c, and kt. Their absolute values are equal to the curvatures of two 

mutually perpendicular normal sections, and their signs show the direction 

of the concavity of the respective normal sections with respect to a chosen 

direction on the normal. 

Let us now prove the theorems of Euler and Meusnier mentioned earlier. 

1. For the proof of Euler’s theorem we need the following lemma. 

If the function j\x, y) has continuous second derivatives at a given point, 

then the coordinate axes may be rotated through an angle a such that 

in the new coordinate system the mixed derivative fx,y, will be equal to 

zero at this point, t We recall that after rotation of axes the new variables 

x', y are connected with x and y by the formulas 

x = x' cos a — y' sin a; y = x' sin a + y' cos a 

(cf. Chapter III, §7). For the proof of the lemma we note that 

dx dy , 8x . dy 
— = cos a, — = sin a, — = —sin a, — = cos a. 
dx dx dy' dy 

* Meusnier (1754-1793) was a French mathematician, a student of Monge; he was 
a general in the revolutionary army and died of wounds received in battle. 

t We will denote partial derivatives by subscripts; for example, in place of df/dx 
we write fx, in place of d*fdy2 we write /„, etc. 
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Computing the derivative by the chain rule, we arrive after some 

calculation at the result 

fx'v = fxy cos 2a + £(/„„ — /«) sin 2a, 

from which it readily follows that for 

we will have 

cot 2a = 
^ Jxy 

Uy. = 0. 

We now consider the surface F, given by the equation z = /(x, y), in 

which the origin is at the point M under consideration and the axes Ox 
and Oy are so chosen in the tangent plane that fxt (0, 0) = 0. In the 

surface P we take an arbitrary straight line making an angle <f> with the 

axis Ox and consider the normal section L in the direction of this straight 

line (figure 27). From the formula derived in §2, the curvature of L at 

the point M, taking its sign into account, is equal to 

^L = lim 
{-0 

2/(*. y) 

f2 

Hertj\x,y) is the distance (again taking its sign into account) of a point 

on L to the chosen straight line. Expanding/(x, y) by Taylor’s formula 
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(Chapter II, §9) and noting that fJO, 0) = /„(0, 0) = 0 (since the axes 

Ox and Oy lie in the tangent plane) we get 

/(x, y) = i (fzxX1 +fyyf) + e(x2 + f), 

where e -* 0 as x -*• 0, y -*■ 0. For a point on L, we have x = $ cos if>, 
y = f sin ij>, f* = x2 + y1 (figure 27), and thus 

, .. fxx?cos24> + fyyt* sin* <t> + 
kL — lim-—- 

{-0 P 

Putting <f> = 0, <}> = n/2, we find that /„ and fyv are the curvatures A:, and 

ki of the normal sections in the direction of the axes Ox and Oy. Thus the 

formula derived is actually Euler’s formula: k — kx cos2 <f> + kt sin* <f>. 
The fact that A:, and kt are the maximal and minimal curvatures also 

follows from this formula. 

2. For the proof of Meusnier’s theorem we consider a normal section 

LN and a section L whose plane forms an angle 6 with the plane of the 

section LN, as in figure 28. The axes Ox and Oy lie in the tangent plane, 

and we also take the axis Ox to be tangent to the curves LN and L at 

the origin. The distance h(x, y) to the Ox axis of a point X on L with 

coordinates x, y, f(x,y) is obviously equal to h(x, y) = |/(x, y)|/cos 6 
(figure 28). Using Taylor’s formula, we express the curvature kL of the 

curve L in the following manner: 

kL = lim 
x-*a 

2h(x, y) 

x2 
= lim 2 

l-*0 

I Ax,y)\ 

X2 cos 9 

|im \fxx** + 2fTyXy +/„„/ + 2t(x2 + f) | 

x-^t x2 cos 9 (5). 



86 VII. CURVES AND SURFACES 

where e -» 0 as x, y -*■ 0. Since the axis Ox is tangent to the curve L, 
obviously lim*,*, y/x = 0. Thus, taking the limit in formula (5), we get 

But for the chosen coordinate system the curve LN has the equation 

z = f(x, 0), for which | kN I = \frJ 1. Thus kL — I kN [/cos 8 and 

Meusnier’s theorem is proved. 

Mean curvature. In many questions of the theory of surfaces, the 

most important role is played not by the principal curvatures themselves 

but by certain quantities dependent on them, namely the mean curvature 
and the Gaussian or total curvature of the surface at a given point. Let 

us examine them in detail. 

The mean curvature of a surface at a given point is the average of the 

principal curvatures 

*.v= *(*,+*,)• 

As an example of the usefulness of this concept, we consider the 

following mechanical problem. We assume that over the surface of some 

body F there is stretched a taut elastic rubber film. We ask about the 

pressure exerted by this film on 

each point of the surface of F. 
The pressure at a point M is 

measured by the force exerted by 

the film on a segment of the 

surface of unit area containing the 

point M; to be more exact, the 

pressure “at the point” M is 

defined as the limit of the ratio 

of this force to the area of the 

segment as the latter shrinks to the 

point M. 
We surround the point M on the surface with a small curvilinear 

rectangle whose sides have lengths Js, and ds2 and are perpendicular 

to the first and second principal directions at M (figure 29).* On each 

side of the rectangle there is exerted a force that is proportional (from 

the assumed uniformity of the tension) to the length of the side and 

the tension T acting on the film. Thus, on the sides perpendicular to 

* Our reasoning here is not rigorous. However, by making estimates of the errors 
introduced, it is possible to give a rigorous proof of the result. 
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the first principal direction, there are exerted forces that are approximately 

equal to TAst and have the direction of the tangent to the surface. 

Similarly, forces equal to TAs2 act on the other pair of sides of the 

rectangle. In order to find the pressure at the point M, we must divide 

the resultant of these four forces by the area of the rectangle (approxi¬ 

mately equal to As2 As2) and pass to the limit for As2, As2 -»• 0. Let us 

begin by dividing the resultant of the first two forces by As2 As2. 
If we examine the rectangle from its side (figure 30), we see that these 

forces are directed 

along tangents to the 

curve of the first nor¬ 

mal section and that 

the distance between 

their points of appli¬ 

cation is exactly As2. 
So we have the same 

problem here as in §2 

for the pressure of a 

string on a support. Fig. 30. 

Using the earlier result, 

we find that the desired limit is equal to ktT, where kt is the curvature 

of the first normal section. With a similar expression for the other two 

forces, we obtain the formula: 

Pm = T\k2 + k2) = 2TKm . 

This result has many important consequences. Let us consider an 

example. 

It is known that the surface film of a liquid is under a tension that 

is the same in all directions on the surface. For a mass of liquid bounded 

by a curved surface, this tension, by the previous result, exerts a pressure 

on the surface which is proportional to its mean curvature at the given 

point. 

So in drops of very small diameter the pressures are very large, a fact 

that hinders the formation of such drops. In a cooling vapor the drops 

begin to form, as a rule, around specks of dust and around charged 

particles. In a completely pure, slightly cooled vapor, the formation of 

drops is delayed. But if, for example, a particle passes through the vapor 

at high speed, causing ionization of the molecules, then around the ions 

formed in its path there will momentarily appear small drops of vapor, 

constituting a visible track of the particle. This is the basis for con¬ 

struction of the Wilson chamber, widely used in nuclear physics for 

observing the motions of various charged particles. 
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Since the pressure exerted by a liquid is the same in all directions, 

a drop of liquid in the absence of other sources of pressure must assume 

a form for which at all points of the surface the mean curvature is the 

same. In the experiment of Plateau, we take two liquids of the same 

specific weight, so that a clot of one of them will float in equilibrium 

in the other. It may be assumed that the floating liquid is acted on only 

by surface tension,* and it turns out that the “floating” liquid always 

takes the form of a sphere. This result suggests that every closed surface 

with constant mean curvature is a sphere, a theorem that is in fact true, 

although the strict mathematical proof of it is very difficult. 

It is possible to approach the question from still another side. In view 

of the fact that the surface tension tends to decrease the area of the 

surface, while the volume of the liquid cannot change, it is natural to 

expect that the floating mass of liquid will have the smallest surface for 

a given volume. It can be proved that a body with this property is a sphere. 

The relation between the lateral pressure of the film and its mean 

curvature can also be used to determine the form of a soap film suspended 

in a contour. Since the lateral pressure over the surface of the film, being 

directed along the normal to the surface, is not opposed by any reaction 

of the support (the support in this case is simply not there), it must be 

equal to zero, so that for the desired surface we have the condition 

ATav = 0. (6) 

From the analytic expression for mean curvature, we obtain a differential 

equation, and the problem consists of solving this equation under the 

condition that the desired surface passes through the given contour.t 

There have been many investigations of this difficult problem. 

The same equation (6) arises from the problem of finding the surface 

of least area bounded by a given contour. From a physical point of view, 

the identity of these two problems is a natural one, since the film tends 

to decrease its area and reaches a position of stable equilibrium only 

when it attains the minimal area possible under the given conditions. 

Surfaces of zero mean curvature, by reason of their connection with this 

problem, are called minimal. 
The mathematical investigation of minimal surfaces is of great interest, 

partly because of their wide variety of essentially different shapes, as 

* The increase of pressure with depth may be ignored, since it is the same for both 
liquids because of their having the same specific weight. So on their common boundary 
the additional internal and external pressures caused by the depth are neutralized by 
each other. 

t For a surface given by the equation z - z(x, y), equation (6) assumes the form 

(1 + z'V - Iz'z'z" + (I + z*)z" = 0. 
i’ tt tin *'»» 
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discovered by experiments with soap film. Figure 31 illustrates two soap 

films suspended from different contours. 

Fig. 31. 

Gaussian curvature. The Gaussian curvature of a surface at a given 

point is the product of the principal curvatures 

K = k. 

The sign of the Gaussian curvature defines the character of the surface 

near the point under consideration. For K > 0 the surface has the form 

of a bowl (kx and kt have the same sign) and for K < 0, when kx and Ar2 

have different signs, the surface is like a saddle. The remaining cases, 

discussed earlier, correspond to zero Gaussian curvature. The absolute 

value of the Gaussian curvature gives the degree of curvature of the 

surface in general, as a sort of abstraction from the various curvatures 

in different directions. This becomes particularly clear if we consider a 

different definition of Gaussian curvature, which does not depend on 

investigating curves on the surface. 

Let us consider a small segment G of the surface F, containing the 

point M in its interior, and at each point of this segment let us erect 

a normal to the surface. 
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If we translate the initial points of all these normals to one point, 

then they fill out a solid angle (figure 32). The size of this solid angle 

will depend on the area of the segment G and on the extent to which 

the surface is curved on this segment. Thus the degree of curvature of 

the segment G may be characterized by the ratio of the size of the solid 

angle to the area of G; so it is natural to define the curvature of the 

surface at a given point as the limit of this ratio when the segment G 
shrinks to the point M* It turns out that this limit is equal to the absolute 

value of the Gaussian curvature at the point M. 
The most remarkable property of the Gaussian curvature, which 

explains its great significance in the theory of surfaces, is the following. 

Let us suppose that the surface has been stamped out from a flexible 

but inextensible material, say a very thin sheet of tin, so that we can 

bend it into various shapes without stretching or tearing it. During this 

process the principal curvatures will change but, as Gauss showed, their 

product kxki will remain unchanged at every point. This fundamental 

result shows that two surfaces with different Gaussian curvatures are 

inherently distinct from each other, the distinction consisting of the fact 

that if we deform them in every possible way, without stretching or 

tearing, we can never superpose them on each other. For example, a 

segment of the surface of a sphere can never be distorted so as to lie 

on a plane or on the surface of a sphere of different radius. 

We have now considered certain basic concepts in the theory of surfaces. 

As for the methods used in this theory, they consist, as was stated 

previously, primarily in the application of analysis and above all of 

* To measure the solid angle itself, we construct a sphere of unit radius with center 
at its vertex. The area of the region in which the sphere intersects the solid angle is 
then taken as the size of the solid angle (figure 32). 
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differential equations. Simple examples of the use of analysis are to be 

found in the proofs for the theorems of Euler and Meusnier. For more 

complicated questions, we require a special method of relating problems 

in the theory of surfaces to problems in analysis. This method is based 

on the introduction of so-called curvilinear coordinates and was first 

widely used in the work of Gauss on problems of the type discussed in 

the following section. 

§4. Intrinsic Geometry and Deformation of Surfaces 

Intrinsic geometry. As indicated previously, a deformation of a 

surface is defined as a change of shape that preserves the lengths of all 

curves lying in the surface. For example, rolling up a sheet of paper 

into a cylindrical tube represents, from the geometric point of view, a 

deformation of part of the plane, since in fact the paper undergoes 

practically no stretching, and the length of any curve drawn on it is not 

changed by its being rolled up. Certain other geometric quantities 

connected with the surface are also preserved; for example, the area of 

figures on it. All properties of a surface that are not changed by defor¬ 

mations make up what is called the intrinsic geometry of the surface. 

But just which are these properties? It is clear that in a deformation 

only those properties can be preserved which in the final analysis depend 

entirely on lengths of curves, i.e., which may be determined by measure¬ 

ments carried out on the surface itself. A deformation is a change of 

shape preserving the length of curves, and any property which cannot 

change under any deformation must be definable in one way or another 

in terms of length. Thus intrinsic geometry is simply called geometry on 
a surface. The very meaning of the words “intrinsic geometry” is that 

it studies intrinsic properties of the surface itself, independent of the 

manner in which the surface is embedded in the surrounding space.* 

Thus, for example, if we join two points on a sheet of paper by a straight 

line and then bend the paper (figure 33), the segment becomes a curve 

but its property of being the shortest of all lines joining the given points 

on the surface is preserved; so this property belongs to intrinsic geometry. 

On the other hand, the curvature of this line will depend on how the 

paper was bent and thus is not a part of intrinsic geometry. 

In general, since the proofs of plane geometry make no reference to 

the properties of the surrounding space, all its theorems belong to the 

* We note that the ideas of intrinsic geometry have led to a wide generalization of 
the mathematical concept of space and have thereby played a very important role in 
contemporary physics; for details see Chapter XVII. 
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intrinsic geometry of any surface obtainable by deformation of a plane. 

One may say that plane geometry is the intrinsic geometry of the plane. 

Another example of intrinsic geometry is familiar to everyone, namely 

geometry on the surface of a sphere, with which we usually have to deal 

Fig. 33. 

in making measurements on the surface of the earth. This example is a 

particularly good one to illustrate the essential nature of intrinsic geome¬ 

try; because of the large radius of the earth, any immediately visible 

area of its surface appears to us as part of a plane, so that the deviations 

from plane geometry observable in the measurements of large distances 

impresses us as resulting not from the curvature of the earth’s surface 

in space but from the inherent laws of “terrestrial geometry,” expressing 

the geometric properties of the surface of the earth itself. 

It remains to note that the idea of studying intrinsic geometry occurred 

to Gauss in connection with the problems of geodesy and cartography. 

Both these applied sciences are concerned in an essential way with the 

intrinsic geometry of the earth’s surface. Cartography deals, in particular, 

with distortions in the ratios of distances when part of the surface of 

the earth is mapped on a plane and thus with distinguishing between 

plane geometry and the intrinsic geometry of the surface of the earth. 

The intrinsic geometry of any surface may be pictured in the same way. 

Let us imagine that on a given surface there exist creatures so small 

that within the limits of their range of vision the surface appears to be 

plane (we know that a sufficiently small segment of any smooth surface 

differs very little from a tangent plane); then these creatures will not 

notice that the surface is curved in space, but in measuring large distances 

they will nevertheless convince themselves that in their geometry certain 
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nonplanar laws prevail, corresponding to the intrinsic geometry of the 
surface on which they live. That these laws are actually different for 
different surfaces may easily be seen from the following simple discussion. 
Let us choose a point O on the surface and consider a curve L such 
that the distance of each of its points from the point O, measured on 
the surface (i.e., along the shortest curve connecting this point to the 
point O) is equal to a fixed number r (figure 34). The curve L, from the 

point of view of the intrinsic geometry of the surface, is simply the 
circumference of a circle of radius r. A formula expressing the length 
s(r) in terms of r is part of the intrinsic geometry of the given surface. 
But such a formula may vary widely in character, depending on the 
nature of the surface: Thus on a plane, s(r) = 2w; on a sphere of radius 
R, as can easily be shown, s<r) = 2nR sin r/R; on the surface illustrated 
in figure 35, beginning with a certain value of r, the length of the cir¬ 

cumference with center O and radius r is at first independent of r but 
then begins to decrease. Consequently, all these surfaces have different 
intrinsic geometries. 

The basic concepts of intrinsic geometry. To illustrate the wide range 
of concepts and theorems in intrinsic geometry, we may turn to plane 
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geometry which, as we have seen, is the intrinsic geometry of the plane. 

Its subject matter consists of plane figures and their properties, which 

are usually expressed in the form of relations among basic geometric 

quantities such as length, angle, and area. For a rigorous proof that 

angle and area belong to the intrinsic geometry of the plane, it is necessary 

to show that they can be expressed in terms of length. But this is certainly 

so; in fact, an angle may be computed if we know the length of the sides 

of a triangle containing it, and the area of a triangle can also be computed 

in terms of its sides, while to compute the area of a polygon we need 

only divide it into triangles. 

In considering plane geometry as the intrinsic geometry of the plane, 

there is no need to restrict ourselves to ideas learned in school. On the 

contrary, we may develop it as far as we like and study many new 

problems, provided only they can be stated, in the final analysis, in 

terms of length. Thus, in plane geometry we may successively introduce 

the length of a curve, the area of a surface bounded by curves, and so 

forth; they are all a part of the intrinsic geometry of the plane. 

The same concepts are introduced in the intrinsic geometry of an 

arbitrary surface. The length of a curve is the initial concept; the definition 

of angles and areas is somewhat more complicated. If the intrinsic 

geometry of a given surface differs from plane geometry, we cannot use 

the customary formulas to define an angle or an area in terms of length. 

However, as we have seen, a surface near a given point differs little 

from its tangent plane. Speaking more precisely, the following is true: 

If a small segment of a surface containing a given point M is projected 

on the tangent plane at this point, then the distance between points, 

measured on the surface, differs from the distance between their projec¬ 

tions by an infinitesimal of higher than the second order in comparison 

with distances from the point M. Thus in defining geometric quantities 

Fig. 36. 
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at a given point of a surface by taking a limit in which infinitesimals 

occur of order no higher than the second, we may replace a segment 

of the surface by its projection on the tangent plane. Thus the quantities 

determined by measurement in the tangent plane turn out to belong to 

the intrinsic geometry of the surface. This possibility of considering a 

small segment of the surface as a plane is the basis of the definitions of 

all the concepts of intrinsic geometry. 

As an example let us consider the definitions of angle and area. 

Following the general principle, we define the angle between curves on 

a surface as the angle between their projections on the tangent plane 

(figure 36). Obviously the angle defined in this manner is identical with 

the angle between the tangents to the curves. The definition of area 

given in §3 is based on the same 

principle. Finally, in order that 

the tendency of a curve to twist 

in space may be defined “within” 

the surface itself, we introduce 

the concept of “geodesic curva¬ 

ture” the name being reminiscent 

of measurements on the surface 

of the earth. The geodesic curva¬ 
ture of a curve at a given point is 

defined as the curvature of its 

projection on the tangent plane Fro. 37. 

(figure 37). 

In this manner we see that the basic concepts of plane geometry may 

be introduced into the intrinsic geometry of an arbitrary surface. 

In any arbitrary surface it is also easy to define figures analogous to 

the basic figures on the plane. For example, we have been dealing 

previously with circumferences of circles, which are defined precisely as 

in the case of the plane. Similarly, we may define the analogue of a line 

segment, namely a geodesic segment, as the shortest curve on the surface 

joining two given points. Further, it is natural to define a triangle as a 

figure bounded by three geodesic segments and similarly for a polygon, 

and so forth. Since the properties of all these figures and magnitudes 

depend on the surface, there exist in this sense infinitely many different 

intrinsic geometries. But intrinsic geometry, as a special branch of the 

theory of surfaces, pays particular attention to certain general laws 

holding for the intrinsic geometry of any surface and makes clear how 

these laws are expressed in terms of the quantities which characterize 

a given surface. 

Thus, as we have noted earlier, one of the most important characteristics 
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of a surface, its Gaussian curvature, is not changed by deformation, i.e., 

depends only on the intrinsic geometry of the surface. But it turns out 

that in general the Gaussian curvature already characterizes, to a re¬ 

markable degree, the extent to which the intrinsic geometry of the surface 

near a given point differs from plane geometry. As an example let us 

consider on a surface a circle L of very small radius r, with center at 

a given point O. On a plane the length s(r) of its circumference is ex¬ 

pressed by the formula s(r) = 27rr. On a surface differing from a plane, 

the dependence of the circumference on the radius is different; here the 

deviation of s(r) from 2nr, depends essentially, for small r, on the Gaussian 

curvature K at the center of the circle, namely; 

s(r) — 2nr — -y- Kr3 + tr3, 

where e -*• 0 as r -* 0. In other words, for small r the circumference 

may be computed by the usual formula if we disregard terms of the 

third degree of smallness, and in this case the error (with accuracy to 

terms of higher than the third order) is proportional to the Gaussian 

curvature. In particular, if K > 0, then the circumference of a circle of 

small radius is smaller than the circumference of a circle with the same 

radius in a plane, and if K < 0, it is larger. These latter facts are easy 

to visualize: Near a point with positive curvature the surface has the 

shape of a bowl so that circumferences are reduced, whereas near a point 

with negative curvature the circumference, being situated on a “saddle,” 

has a wavelike shape and is thus considerably lengthened (figure 38). 

O 

From the theorem just mentioned, it follows that a surface with varying 

Gaussian curvature is extremely inhomogeneous from a geometric point 

of view; the properties of its intrinsic geometry change from point to 

point. The general character of the problems of intrinsic geometry causes 
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it to resemble plane geometry, but this inhomogeneity, on the other 

hand, makes it profoundly different from plane geometry. On the plane, 

for example, the sum of the angles of a triangle is equal to two right 

angles; but on an arbitrary surface the sum of the angles of a triangle, 

(with geodesics for sides) is undetermined even if we are told that it lies 

on a known surface and has sides of given length. However, if we know 

the Gaussian curvature K at every point of the triangle, then the sum 

of its angles, a, /3, y, can be computed by the formula 

a + /3 + y = rr + JJ K da, 

where the integral is taken over the surface of the triangle. This formula 

contains as a special case the well-known theorems on the sum of the 

angles of a triangle in the plane and on the unit sphere. In the first 

case K = 0 and a + f3 + y = n, while in the second K = 1 and 

a + )3 + y = 7r + S, where S is the area of the spherical triangle. 

It may be proved that every sufficiently small segment of a surface 

with zero Gaussian curvature may be deformed, or, as it is customary 

to say, developed into a plane, since it has the same intrinsic geometry 

as the plane. Such surfaces are called developable. And if the Gaussian 

curvature is near zero, then although the surface cannot be developed 

into a plane, still its intrinsic geometry differs little from plane geometry, 

which indicates once again that the Gaussian curvature acts as a measure 

of the extent to which the intrinsic geometry of a surface deviates from 

plane geometry. 

Geodesic lines. In the intrinsic geometry of a surface the role of 

straight lines is played by geodesic lines, or, as they are usually called, 

“geodesics.” 

A straight line in a plane may be defined as a line made up of intervals 

overlapping one another. A geodesic is defined in exactly the same way, 

with geodesic segments taking the place of intervals. In other words, a 

geodesic is a curve on a surface such that every sufficiently small piece 

of it is a shortest path. Not every geodesic is a shortest path in the large, 

as may be noted on the surface of a sphere, where every arc of a great 

circle is a geodesic, although this arc will be the shortest path between 

its end points only if it is not greater than a semicircle. A geodesic, as 

we see, may even be a closed curve. 

To illustrate certain important properties of geodesics, let us consider 

the following mechanical model.* On the surface Flet there be stretched 

* As noted previously, our reasoning here is not a strict proof of the properties of 
geodesic curves. It is given only to illustrate the most important of these properties. 
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a rubber string with fixed ends (figure 39). * The string will be in equilibrium 

when it has the shortest possible length, since 

any change in its position will then involve an 

increase of length, which could be produced 

only by external forces. In other words, the 

string will be in equilibrium if it is lying along 

a geodesic. But for equilibrium, it is necessary 

that the elastic forces on each segment of the 

string be counterbalanced by the resistance of 

the surface, directed along the normal to it. 

(We assume that the surface is smooth and that 

there is no friction between it and the string.) 

But it was proved in §2 that the pressure on the support caused by the 

tension of the string is directed along the principal normal to the curve 

along which the string lies. Thus we are led to the following result: 

The principal normal to a geodesic at each point coincides in direction 

with the normal to the surface. The converse of this theorem is also 

true: Every curve on a regular surface which has this property is a 

geodesic. 

This property of a geodesic allows us to deduce the following important 

fact: If a material point is moving on a surface in such a way that there 

are no forces acting on it except for the reaction of the surface, then it 

follows a geodesic. For, as we know from §2, the normal acceleration 

of a point is directed along the principal normal to the trajectory and 

since the reaction of the surface is the only force acting on the point, 

the principal normal to the trajectory is identical with the normal to 

the surface, so that from the preceding theorem the trajectory is a 

geodesic. This last property of geodesics increases their resemblance to 

straight lines. Just as the motion of a free point, because of inertia, is 

along a straight line, so the motion of a point forced to stay on a surface, 

but not affected by external forces, will be along a geodesic.t 

From the same property of geodesics comes the following theorem. 

If two surfaces are tangent along a curve that is a geodesic on one of 

them, then this curve will also be a geodesic on the other. For at each 

point of the curve, the surfaces have a common tangent plane and 

consequently a common normal, and since the curve is a geodesic on 

one of the surfaces, this normal coincides with the principal normal to 

the curve, so that on the second surface also the curve will be a geodesic. 

* A stretched string will not remain on a surface unless the surface is convex; so 
in order not to make exceptions, it is better to imagine that the surface is in two layers, 
with the string running between them. 

t Here by “external” forces we mean all forces except the reaction of the surface. 
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From these results follow two further intuitive properties of geodesic 

curves. In the first place, if an elastic rectangular plate (for example a 

steel ruler) lies with its median line completely on a surface, then it is 

tangent to this surface along a geodesic. (Evidently the line of contact 

is a geodesic on the ruler, so that it must be a geodesic also on the surface.) 

Second, if a surface rolls along a plane in such a way that the point of 

contact traces a straight line on the plane, then the trace of this straight 

line on the surface is a geodesic.* Both these properties are readily 

demonstrated on a cylinder, where it is easy to convince oneself by ex¬ 

periment that the median line of a straight plane strip lying on the cylinder 

(figure 40) coincides with either a generator or the circumference of a 

Fro. 40. 

circle or a helix, and it is not difficult to prove that a geodesic curve on 

a cylinder can be only one of these three. The same curves will be traced 

out on a cylinder if we roll it on a plane on which we have drawn a 

straight line in chalk. 

The analogy between geodesics and straight lines in a plane may be 

supplemented by still another important property, taken directly from 

the definition of a geodesic. Namely, straight lines in the plane may be 

defined as curves of zero curvature and geodesics on a surface as curves 

of zero geodesic curvature. (We recall that the geodesic curvature is the 

curvature of the projection of the curve on the tangent plane, cf. figure 37.) 

It is quite natural that our present definition of a geodesic should coincide 

with the earlier one; for if at every point of the curve the curvature of 

* This proposition does not differ essentially from the preceding one, since the rolling 
of a surface on a plane is equivalent in a well-defined sense to the unwinding of a 
plane strip along the surface. 
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its projection on the tangent plane is equal to zero, then the curve departs 

from its tangent essentially in the direction of the normal to the surface, 

so that the principal normal to the curve is directed along the normal to 

the surface and the curve is a geodesic in the original sense. Conversely, 

if a curve is a geodesic, then its principal normal, and so also its deviation 

from the tangent line, are directed along the normal to the surface, so 

that in projecting on the tangent plane we get a curve in which the 

deviation from the tangent is essentially smaller than for the original 

curve, and the curvature of the projection so formed turns out to be 

equal to zero. 

The course of a geodesic may vary widely for different surfaces. As 

an example, in figure 41 we trace some geodesics on a hyperboloid of 

revolution. 

Fig. 41. 

Deformation of surfaces. Since intrinsic geometry studies the proper¬ 

ties of surfaces that are invariant under deformation, it naturally investi¬ 

gates these deformations themselves. The theory of deformation of 

surfaces is one of the most interesting and difficult branches of geometry 

and includes many problems which, although simple to state, have not 

yet been finally solved. 

Certain questions about the deformation of surfaces were already 

considered by Euler and Minding, but general results for arbitrary 

surfaces were not derived until later. 

In the general theory of deformation, we first of all raise the question 

whether deformation is possible for all surfaces and, if so, to what extent. 



§4. INTRINSIC GEOMETRY AND DEFORMATION 101 

For analytic surfaces, i.e., surfaces defined by functions of the coordinates 

that can be expanded in a Taylor series, this question was solved at the 

end of the last century by the French mathematician Darboux. In par¬ 

ticular, he.showed the following: If on such a surface we consider any 

geodesic and assign in space an arbitrary (analytic) curve with the same 

length, and with curvature nowhere equal to zero, then a sufficiently 

narrow strip of the surface, containing the given geodesic, can be deformed 

so that the geodesic coincides with the given curve.* This theorem shows 

that a strip of the surface may be deformed rather arbitrarily. However, 

it has been proved that if a geodesic is to be transformed into a preassigned 

curve, then the surface may be deformed in no more than two ways. 

For example, if the curve is plane, then the two positions of the surface 

will be mirror images of each other in the plane. If the geodesic is a 

straight line, then this last proposition is not true, as can be shown by 

deforming a cylindrical surface. 

We have defined a deformation as a transformation of the surface that 

preserves the lengths of all curves on the surface. Here we have considered 

only the final result of the transformation; the question of what happens 

to the curve during the process did not enter. However, in considering 

a surface as made from a flexible but unstretchable material, it is natural 

to consider a continuous transformation, at each instant of which the 

lengths remain unchanged (physically this corresponds to the un- 

stretchability of the material). Such transformations are called continuous 
deformations. 

At first glance it may seem that every deformation can be realized in 

a continuous manner, but this is not so. For example, it has been shown 

that a surface in the form of a circular trough (figure 42), does not admit 

continuous deformations (this explains, among other things, the familiar 

fact that a pail with a curved rim is considerably stronger than one with 

a plain rim) although deformations of such a surface are possible: for 

* The case of transforming a geodesic into a curve with zero curvature is excluded, 
since it is easy to show that for surfaces of positive Gaussian curvature this is impossible. 
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example, one may cut the trough along the circle on which it rests on 

a horizontal plane and replace one half of it by its mirror image in this 

plane (compare figure 43 with figure 42; to aid visualization we have 

drawn only the left half of the surface). It is intuitively clear that the 

impossibility of a continuous deformation is due to the circular shape 

of the trough; for a straight trough such a deformation can be performed 

continuously. 

If we restrict ourselves to a sufficiently small segment of the surface, 

then there are no obvious hindrances to its continuous deformation, and 

we might expect that every deformation of a small segment of the surface 

can be realized by a continuous transformation, followed perhaps by a 

mirror reflection. This is in fact true, but only under the condition that 

on the given small segment of the surface the Gaussian curvature never 

vanishes (excepting the case that it vanishes everywhere). But if the 

Gaussian curvature vanishes at isolated points, then, as N. V. Efimov 

showed in 1940, even arbitrarily small segments of a regular surface may 

not admit any continuous deformation without loss of regularity. For 

example, the surface defined by the equation z — .v* + Ajdy -f y*, where 

A is a transcendental number, has the property that no segment containing 

the origin, no matter how small it may be, admits sufficiently regular 

continuous deformations. Efimov’s theorem is a new and somewhat 

unexpected result in classical differential geometry. 

In addition to these general questions about deformation, a great deal 

of attention is being paid to special types of deformation of surfaces. 

The connection of the intrinsic geometry of a surface with the form of 

the surface in space. We already know that certain properties of a 

surface, and of the figures on it, are defined by the intrinsic geometry 

of the surface even though these properties are very closely related to 

other properties that depend on how the surface is embedded in the 

surrounding space, properties that are, as they say, “extrinsic” to the 

surface. For example, the principal curvatures are extrinsic properties of 

a surface, but their product (the Gaussian curvature) is intrinsic. Another 

example, in order that the principal normal of a curve lying on a surface 

should coincide with the normal to the surface, it is necessary and 

sufficient that this curve have a property defined by its intrinsic geometry, 

namely that it be a geodesic. 

Consequently, the intrinsic geometry of a surface will determine its 

space form only to a certain extent. 

The dependence of the space form of a surface on its intrinsic geometry 

may be expressed analytically in the form of equations containing certain 

quantities that characterize the intrinsic geometry and certain other 
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quantities that characterize the way in which the curved surface is 

embedded in space. One of these equations is the formula expressing 

the Gaussian curvature in intrinsic terms and is due to Gauss. Two other 

such equations are those of Peterson and Codazzi, mentioned in §1. 

The equations of Gauss, Peterson, and Codazzi completely express the 

connection between the intrinsic geometry of a surface and the character 

of its curvature in space, since all possible interrelations between intrinsic 

and extrinsic properties of an arbitrary surface are included, at least in 

implicit form, in these equations. 

Since the form of a surface in space is not completely defined by its 

intrinsic geometry, we naturally ask, What extrinsic properties must still 

be assigned in order to determine the surface completely? It turns out 

that if two surfaces have the same intrinsic geometry and if, at correspond¬ 

ing points and in corresponding directions, the curvatures of the normal 

sections of these surfaces have the same sign, then the surfaces are 

congruent; that is, they can be translated so as to coincide with each 

other. We note that Peterson discovered this theorem 15 years earlier 

than Bonnet, with whose name it is usually associated. 

Analytic apparatus in the theory of surfaces. The systematic applica¬ 

tion of analysis to the theory of surfaces led to the building up of an 

analytic apparatus especially suitable for this purpose. The decisive step 

in this direction was taken by Gauss, who introduced the method of 

representing surfaces by so-called curvilinear coordinates. This method 

is a natural generalization of the idea of Cartesian coordinates on the 

plane and is closely connected with the intrinsic geometry of the surface, 

for which the presentation of the surface by an equation of the form 

z = f(x, y) is not convenient. The inconvenience consists of the fact that 

the x, y coordinates of a point on the surface change when the surface 

is deformed. To eliminate this difficulty, the coordinates are chosen on 

the surface itself; they define each point by two numbers u and v, which 

are associated with the given point and remain associated with it even 

after deformation of the surface. The space coordinates x, y, z of the 

point will in each case be functions of u and v. The numbers u and v 
defining the point on a surface are called its curvilinear coordinates. 
The choice of name is to be understood as follows: If we fix the value 

of one of these coordinates, say v, and vary the other, then we get a 

coordinate curve on the surface. The coordinate curves form a curvilinear 

net on the surface, similar to the coordinate net on a plane. We note 

that the familiar method of describing the position of a point on the 

surface of the earth by means of longitude and latitude consists simply of 

introducing curvilinear coordinates on the surface of a sphere; the coor- 
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dinate net in this case consists of circles, namely the meridians and 

parallels* (figure 44). To describe the spatial position of a surface by 

means of curvilinear coordinates, we need to define the position of each 

point in terms of u and v, for example by giving, as a function of u and v, 
the vector r = r(u, v), issuing from some fixed origin to the points on 

the surface and called the radius vector of the surface. (This is equivalent 

to giving the x, y, and z components of the vector r as functions of u 
and t>.)t To define a curve lying on a given surface, we need to give the 

coordinates u, v as functions of one parameter t; then the radius vector 

to a point moving along this curve is expressed as a composite function 

'MO. KOI- 
For vector functions the concepts of derivative and differential may be 

generalized word for word; from the definition of the derivative as the 

limit of Ar/At when At -* 0 (r is a function of the parameter t) it follows 

* It is characteristic that geographic coordinates and their practical applications 
were known long in advance of Descartes' introduction of the usual coordinates in 
the plane. 

t Of course Gauss did not use vector notation, but defined the three coordinates 
x, y, 2 of the points of the surface separately as functions of u and v. Vectors, which 
were introduced as a result of the work of Hamilton and Grassmann, were at first used 
widely in physics and only later (in fact, in the 20th century) became the traditional 
apparatus for analytic and differential geometry. 
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at once that the derivative of the radius vector of a curve is a vector 

directed along the tangent to the curve (figure 45). For vector functions 

the basic properties of ordinary derivatives are still valid; for example, 

the chain rule 

dr[u(t), t</)] dr du dr dv , 
It -YuTt + hlt- r«u' + r*v" (7) 

where ru and rv are the partial derivatives of the vector function r(u, v). 
The length of a curve, as can be shown, is expressed by the integral 

5 = | Vx'\t) + y\t) + z'*(0 dt. 

Thus, the differential of the length of a curve is equal to 

ds = Vx-*(t) + y'\t) + z'\t) dt. 

But since x\t), y'(t), and z'(t) are components of the vector dr/dt = r't, 
we may write ds = \r\\ dt, where | rj | denotes the length of the vector r\. 
For curves lying on a surface, we get from (7) 

ds = | ru u', + rv v't \ dt. 

Computing the square of the length of the vector on the right we obtain, 

by the rules of vector algebra,* 

ds* = [r*«;* + 2rurvu'tv\ + dt*. 

Passing to differentials and introducing the notation 

rl = E{u, v), rurv = F(u, v), r* = G(u, v). 

we have 

ds2 = E du2 + 2 F du dv + G dv2. 

We see that the square of the differential of arc length on a surface is 

a quadratic form in the differentials du and dv with coefficients depending 

on the point of the surface. This form is called the first fundamental 
quadratic form of the surface. Given the coefficients E, F, and G of this 

* The square of the length of a vector is the scalar product of the vector with itself, 
and for scalar multiplication (cf. Chapter III, §9) the usual rules hold for the removal 
of brackets. 
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form at each point on a surface we may compute the length of any curve 

on the surface by the formula 

s = J VEu* + 2Fu'tv\ + Gv'f dt. 

so that its intrinsic geometry is thereby completely determined. 

We show, as an example, how to express angle and area in terms of 

E, F, and G. Let two curves issue from a given point, one of them given 

by the equations u — «/,(/), v = and the other by the equations 

u = ut(t), v = vj(/). Then the tangents to these curves are given by the 

vectors 

dux dvx 

+ r'HT’ 

du, dv. 
r,= r„^ + r.^. 

The cosine of the angle between these vectors is equal to the scalar 

product r,rt divided by the product of the lengths rxrt 

2 dux du2 , / dut dvt , dut di\ \ ( 2 di\ dv2 

ru~di"di r“M IT IT ~dT~dT’ r'-dF"df 
dux dvt dut dvx \ 2 dvx dv2 

Recalling that r„ = £, rurv = F, r* = G, we get 

F dux du2 | / dux dvt dut dvx \ - dvx dvt 

dtdt \ dt dt dt dt f dt dt 

To obtain a formula for area, we consider a curvilinear rectangle 

bounded by the coordinate curves u — u0 , v = v0, u = u0 + du, 
v = i>0 + Av, and we take as an approximation to it the parallelogram 

lying in the tangent plane and bounded by the vectors ruAu,rvAv, tangent 

to the coordinate curves (figure 46). The area of this parallelogram is 
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As = | ru | | rv | Au Av sin <f>, where <f> is the angle between ru and rv. Since 

an<f> = V1 — cos2<f>, it follows that As = \ ru \ \ rv \ Au Av Vl — cos*<£ 

= v'r*r* — | ru |* | r„ |* cos2</> Au Av. Recalling that r* — E, r\ = G, 

| ru | • | r„ | cos<£ = rur„ = F, we get - VFG — F2 Au Av. Summing 

up the areas of the parallelograms and taking the limit as Au, Av -*■ 0 

we obtain the formula for area S = JJd VeG — F*dudv, where the 

integration is taken over the domain D of the variables u and v which 

describe the given segment of the surface. 

In this way, curvilinear coordinates are very convenient for studying 

the intrinsic geometry of a surface. 

It also turns out that the manner in which a curved surface is embedded 

in the surrounding space can be characterized by a certain quadratic 

form in the differentials du, dv. Thus if n is a unit vector normal to the 

surface at the point M, and Ar is the increment in the radius vector to 

the surface as we move from this point, then the deviation h of the surface 

from the tangent plane (figure 47) is equal to n Ar. Expanding the incre¬ 

ment Ar by Taylor’s formula, we get 

h = ndr + J /»dhr + e(du2 + dv2), 

where e -*■ 0 as Vdu2 + dv2 -* 0. Since the vector dr lies in the tangent 

plane, we have ndr = 0. The last term, t(du2 + dv2) is small in com¬ 

parison with the squares of the differentials du and dv. There remains 

the principal term \n cPr. Thus twice the principal part of h, namely 

n d2r, is a quadratic form with respect to du and dv 

n d2r = nruu du2 + 2nruv du dv + nrvv dv2. 

This form describes the character of the deviation of the surface from 
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the tangent plane. It is called the second fundamental quadratic form of 

the surface. Its coefficients, which depend on u and v, are usually written: 

nrau = L, nruv = M, nrvv = N. 

Knowing the second fundamental quadratic form, we can compute 

the curvature of any curve on a surface. Thus, applying the formula 

k = lim,_0 2A//2, we obtain the result that the curvature of the normal 

section in the direction corresponding to the ratio du/dv is equal to 

, n d'lr L du2 + 2M du dv + N dv2 

” ~ ~ddr ~ Edu2 + 2Fdudv + G dv* ' 

If the curve is not a normal section, then by Meusnier’s theorem it is 

sufficient to divide the curvature of the normal section in the same direction 

by the cosine of the angle between the principal normal to the curve 

and the normal to the surface. 

The introduction of the second fundamental quadratic form provides 

an analytic approach to the study of how the surface is curved in space. 

In particular, one may derive the theorems of Euler and Meusnier, the 

expressions for the Gaussian and mean curvature, and so forth, in a 

purely analytic way. 

Peterson’s theorem, mentioned earlier, shows that the two quadratic 

forms, taken together, define a surface up to its position in space, so 

that the analytic study of any properties of a surface consists of the study 

of these forms. In conclusion, we note that the coefficients of the two 

quadratic forms are not independent; the connection mentioned earlier 

between the intrinsic geometry of a curved surface and the way in which 

it is embedded in space is expressed analytically by three relations (the 

equations of Gauss-Codazzi) between the coefficients of the first and the 

second fundamental quadratic forms. 

§5. New Developments in the Theory of Curves and Surfaces 

Families of curves and surfaces. Even though the basic theory of 

curves and surfaces was to a large degree complete by the middle of the 

last century, it has continued to develop in several new directions, which 

greatly extend the range of figures and properties investigated in con¬ 

temporary differential geometry. There is one of these developments 

whose origins go back to the beginning of differential geometry, namely 

the theory of “families” or of continuous collections of curves and surfaces, 

but this theory may be considered new in the sense that its more profound 

aspects were not investigated until after the basic theory of curves and 

surfaces was already completely developed. 
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In general a continuous collection of figures is called an n-parameter 

family if each figure of the collection is determined by the values of n 

parameters and all the quantities characterizing the figure (in respect to 

its position, form, and so forth) depend on these parameters in a manner 

which is at least continuous. From the point of view of this general 

definition, a curve may be considered as a one-parameter family of points 

and a surface as a two-parameter family of points. The collection of all 

circles in the plane is an example of a three-parameter family of curves, 

since a circle in the plane is determined by three parameters: the two 

coordinates of its center and its radius. 

The simplest question in the theory of families of curves or surfaces 

consists of finding the 

so-called envelope of the 

family. A surface is called 

the envelope of a given 

family of surfaces if at 

each of its points it is 

tangent to one of the 

surfaces of the family and 

is in this way tangent to 

every one of them. For 

example, the envelope of 

a family of spheres of 

equal radius with centers on a given straight line will be a cylinder 

(figure 48), and the envelope of such spheres with centers on all points 

of a given plane will consist of two parallel planes. The envelope of a 

family of curves is defined similar¬ 

ly. Figure 49 diagrams jets of 

water issuing from a fountain at 

various angles; in any one plane 

they form a family of curves, 

which may be considered approxi¬ 

mately as parabolas; their enve¬ 

lope stands out clearly as the 

general contour of the cascade of 

water. Of course, not every family 

of curves or surfaces has an enve¬ 

lope; for example, a family of 

parallel straight lines does not 

have one. There exists a simple 

general method of finding the 

envelope of any family; for a 

Fig. 48. 

Fig. 49. 
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family of curves in the plane this method was given by Leibnitz. 

Every curve is obviously the envelope of its tangents, and in exactly 

the same way every surface is the envelope of its tangent planes. Inciden¬ 

tally, this fact provides a new method of defining a curve or a surface 

by giving the family of its tangent lines or planes. For some problems 

this method turns out to be the most convenient. 

Generally speaking, the tangent planes of a surface are different at 

different points, so that the family of tangents to the surface is obviously 

a two-parameter one. But in some cases, for example, a cylinder, it is 

one parameter. It can be shown that the following remarkable theorem 

holds. A one-parameter family of tangent planes occurs only for those 

surfaces that are developable into a plane, i.e., those in which any 

sufficiently small segment may be deformed into a plane segment; these 

are the developable surfaces noted in §4. Every analytic surface of this 

kind consists of segments of straight lines and is either cylindrical 

(parallel straight lines) or conical (straight lines passing through one 

point), or consists of the tangents to some space curve. 

The theory of envelopes is particularly useful in engineering problems, 

for example in the theory of transmissions. We consider two gears A 

and B. To study their motion relative 

to each other, we may assume that 

gear A is stationary and gear B moves 

around it (figure 50). Then the contour 

of a cog on gear B, as it assumes 

various positions, traces out a family of 

curves in the plane of gear A, and the 

contour of gear A must at all times be 

tangent to them, i.e., must be the 

envelope of the family. Of course, this 

is not a complete statement of the 

situation, since in an actual transmission this engagement must be 

transferred from one pair of cogs to the next, but this condition is never¬ 

theless the basic one which must be satisfied by every type of gear. 

As we have said, the question of envelopes is a relatively simple one, 

solved long ago, in the theory of families of curves and surfaces. This 

theory is just as rich in interesting problems as, let us say, the theory of 

surfaces itself. Especially well developed is the theory of “congruences,” 

i.e., two-parameter families of various curves (and in particular of straight 

lines: the so-called “straight-line” congruences). In this theory one 

applies essentially the same methods as in the theory of surfaces. 

The theory of straight-line congruences originated in the paper of 

Monge, “On excavations and fills,” the title of which already shows that 

Fig. 50. 
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Monge undertook the investigation for practical purposes; the main idea 

was to find the most convenient way of transporting earth from an 

excavation to a fill. 

The systematic development of the theory of congruences, beginning 

in the middle of the last century, is due in large measure to its connection 

with geometric optics; the set of rays of light in a homogeneous medium 

at any time constitutes a straight-line congruence. 

Nonregular surfaces and geometry “in the large.” The theory of 

curves and surfaces (and of families of them), as it had been constructed 

by the end of the last century, is usually called classical differential 

geometry; it has the following characteristic features. 

First, it considers only “sufficiently smooth” (i.e., regular) curves and 

surfaces, namely those which are defined by functions with a sufficient 

number of derivatives. Thus, for example, surfaces with cusps or edges, 

such as polyhedral surfaces or the surface of a cone, are either excluded 

from the argument or are considered only on the parts where they remain 

smooth. 

Second, classical differential geometry pays especial attention to 

properties of sufficiently small segments of curves and surfaces (geometry 

“in the small”) and nowhere considers properties of an entire closed 

surface (geometry “in the large”). 

Typical examples, illustrating the distinction between geometry “in the 

small” and “in the large" are provided by the deformation of surfaces. 

For example, already in 1838 Minding showed that a sufficiently small 

segment of the surface of a sphere can be deformed, and this is a theorem 

“in the small.” At the same time, he expressed the conjecture that the 

entire sphere cannot be deformed. This theorem was proved by other 

mathematicians as late as 1899. Incidentally, it is easy to confirm by 

experiment that a sphere of flexible but inextensible material cannot be 

deformed. For example, a ping-pong ball holds its shape perfectly well 

although the material it is made from is quite flexible. Another example, 

mentioned in §4, is the tin pail; it is rigid in the large, thanks to the presence 

of a curved flange, but separate pieces of it can easily be bent out of 

shape. As we see, there is an essential difference between properties of 

surfaces “in the small” and “in the large.” 

Other characteristic examples are provided by the theory of geodesics, 

discussed in §4. A geodesic “in the small,” i.e., on a small segment of 

the surface, is a shortest path, but “in the large” it may not be so at all; 

for example, it may even be a closed curve, as was pointed out earlier 

for great circles of a sphere. 

The reader will readily note that the theorems on geodesics formulated 



112 VII. CURVES AND SURFACES 

in §4 are basically theorems “in the small.” Questions on the behavior 

of geodesic curves throughout their whole course will belong to geometry 

“in the large.” It is known, for example, that on a regular surface two 

sufficiently adjacent points can be joined by a unique geodesic, remaining 

entirely in a certain small neighborhood of two points. But if we consider 

geodesics that during their course may depart as far as we like from 

the two points, then by a theorem of Morse any pair of points on a 

closed surface may be joined by an infinite number of geodesics. Thus, 

two points A and B on the lateral surface of a curved cylinder may be 

joined by very different geodesics: it is sufficient to consider helices which 

run from A to B but wind around the cylinder a different number of 

times. The theorem of Poincar^ on closed geodesics, stated in §5 of 

Chapter XVIII, and proved by Ljusternik and Snirelman, also belongs 

to geometry “in the large.” 

The proofs for these theorems, as for many theorems of geometry 

“in the large,” were inaccessible with the usual tools of classical differential 

geometry and required the invention of new methods. 

When these problems of geometry “in the large” were inevitably 

attracting the attention of mathematicians, the restriction to regular 

surfaces could no longer be maintained, if only because we are continually 

encountering surfaces that are not regular but have discontinuous curva¬ 

ture ; for example, convex lenses with a sharp edge, and so forth. Moreover, 

there are many analytic surfaces that cannot be extended in any natural 

way without acquiring “singularities” in the form of edges or cusps and 

thus becoming nonregular. 

Thus, a segment of the surface of a cone cannot be extended in a natural 

way without leading to the vertex, a cusp where the smoothness of the 

surface is destroyed. 

This last result is only a particular case of the following remarkable 

theorem. Every developable surface other than a cylinder will lead, if 

naturally extended, to an edge (or a cusp in the case of a cone) beyond 

which it cannot be continued without losing its regularity. 

Thus there is a profound connection between the behavior of a surface 

“in the large” and its singularities. This is the reason why the solution 

of problems “in the large” and the study of surfaces with “singularities” 

(edges, cusps, discontinuous curvature and the like) must be worked out 

together. 

Similar new directions were taken in analysis. For example, the 

qualitative theory of differential equations mentioned in §7 of Chapter V, 

studies the properties of solutions of a differential equation in its entire 

domain of definition, i.e., “in the large,” paying particular attention to 

“singularities,” i.e., to violations of regularity, and to singular points of 
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the equation. Moreover, contemporary analysis includes the study of 

nonregular functions which did not occur in classical analysis (cf. Chapter 

XV) and thereby provides geometry with a new means of studying more 

general surfaces. Finally, in the calculus of variations, where we are 

usually looking for curves or surfaces with some extremal property, it 

sometimes happens that the limit curve, for which the extreme is attained, 

is not regular. For such problems it is necessary that the class of curves 

or surfaces under consideration should be closed (that is, should include 

all its limit curves or surfaces), a fact which necessarily led to the study 

of at least the simplest nonregular curves and surfaces. In a word, the 

new directions taken by geometry did not originate in isolation but in 

close connection with the whole development of mathematics. 

The turning of attention to problems “in the large” and nonregular 

surfaces began about 50 years ago and was shared by many mathemati¬ 

cians. The first essential step was taken by Hermann Minkowski (1864- 

1909), who laid the foundation for an extensive branch of geometry, the 

theory of convex bodies. Incidentally, one of the questions which started 

Minkowski on his investigations was the problem of regular lattices, 

which is closely connected with the theory of numbers and geometric 

crystallography. 

A body is called convex if through each point of its surface we may 

pass a plane that does not intersect the body, i.e., at any point of its 

surface the body may rest on a plane (figure 51). A convex body is defined 

Fig. 51. 

by its surface alone, so that for the most part it makes no difference 

whether we speak of the theory of convex bodies or of closed convex 

surfaces. The general theorems on convex bodies are proved, as a rule, 

without any additional assumptions about the smoothness or “regularity” 

of their surfaces. Thus these theorems are usually concerned with the 

whole convex body or surface, so that the restrictions of classical dif¬ 

ferential geometry are automatically removed. However, the two theories 



114 VII. CURVES AND SURFACES 

(of convex bodies and of nonregular surfaces) were at first very little 

connected with each other, the combination of the two taking place 

considerably later. 

Beginning in 1940, A. D. Aleksandrov developed the theory of general 

curves and surfaces, including both the regular surfaces of classical 

differential geometry and also such nonsmooth surfaces as polyhedra, 

arbitrary convex sets, and others. In spite of the great generality of this 

theory, it is chiefly based on intuitive geometric concepts and methods, 

although it also makes essential use of contemporary analysis. One of 

the basic methods of the theory consists of approximating general surfaces 

by means of polyhedra (polyhedral surfaces). This device in its simplest 

form is known to every schoolboy, for example, in computing the area 

of the lateral surface of a cylinder as the limit of the areas of prisms. 

In a number of cases the method produces strong results that either 

cannot be derived in another way or else, if they are to be proved by an 

analytic method, require the introduction of complicated ideas. Its 

essential feature consists of the fact that the result is first obtained for 

polyhedra and is then extended to general surfaces by a limit process. 

One of the beginnings of the theory of general convex surfaces was 

the theorem on the conditions under which a given evolute (cf. figure 52) 

may be pasted together 

to form a convex poly¬ 

hedron. This theorem, 

completely elementary in 

its formulation, has a 

nonelementary proof and 

leads to far-reaching cor¬ 

ollaries for general con¬ 

vex surfaces. The reader 

is, of course, familiar with 

the pasting together of a 

polyhedral surface from 

segments; for example, 

the assembling of a cube 

from the cross-shaped 

pattern in figure 52, or 

Fio. 52. of a cylinder from a rec¬ 

tangle and two circles. 

This simple example of assembling surfaces from segments of them is 

converted into a general method of “cutting apart and pasting together,” 

which has produced profound results in various questions of the theory 

of surfaces and has found practical applications. 
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Deep-lying results in this theory were obtained by A. V. Pogorelov. 

In particular, he showed that every closed convex surface cannot be 

deformed as a whole with preservation of its convexity. This result, 

achieved in 1949, completes the efforts of many well-known mathemati¬ 

cians, who for the preceding 50 years had tried to prove it but had been 

successful only under various additional hypotheses. The results of 

Pogorelov, in conjunction with the “method of pasting together,” not 

only provided a complete solution for the problem, but almost completely 

cleared up the whole question of the deformability or nondeformability 

of closed and nonclosed convex surfaces. They also established a 

close connection between the new theory and “classical” differential 

geometry. 

In this way a theory of surfaces was constructed that included the 

classical theory as well as the theory of polyhedra, of arbitrary convex 

surfaces, and of very general nonconvex surfaces. Lack of space does 

not allow us to discuss in detail the results or the still unsolved problems 

of the theory, although this could readily be done, since they are for 

the most part quite easily visualized and, in spite of the difficulty of 

exact proofs, do not require any special knowledge. 

In §4, in speaking of the deformation of surfaces, we had in mind 

deformations of a regular (continuously curved) surface that preserved 

its regularity. But in the theorem of Pogorelov, on the contrary, there 

is no requirement of regularity for either the initial or the deformed 

surface, although the requirement of convexity is imposed on both 

surfaces. 

It is obvious that deformation of a sphere, for example, becomes 

possible if we allow breaks in the surface and violation of the convexity. 

It is sufficient to cut out a segment of the surface and then replace it 

after the deformation; that is, so to speak, to push a segment of the 

surface into the interior. Considerably more unexpected is the result 

obtained recently by the American mathematician Nash and the Dutch 

mathematician Kuiper. They showed that if we preserve only the smooth¬ 

ness of a surface and allow the appearance of any number of sharp jumps 

in the curvature of the surface (i.e., if we eliminate any requirement of 

continuity, boundedness, or even existence of the second derivatives of 

the functions defining the surface) then it turns out to be possible to 

deform the surface as a whole with a very great degree of arbitrariness. 

In particular a sphere may be deformed into an arbitrarily small ball, 

which has a smooth surface consisting of very shallow wavelike creases. 

Some idea of a deformation of this sort may be gained by the easily 

imagined possibility of rumpling up into almost any shape a spherical 

cover made of very soft cloth. On the other hand, a small celluloid ball 
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behaves very differently. The elastic material of its surface resists not 

only extension but also sharp bending, so that such a ball is very rigid. 

Differential geometry of various groups of transformations. At the 

beginning of this century, there arose from classical differential geometry 

a series of new developments based on one general idea, namely the study 

of properties of curves, surfaces, and families of curves and surfaces which 

remain invariant under various types of transformations. Classical 

differential geometry investigated properties invariant under translation; 

but of course there is nothing to prevent us from considering other 

geometric transformations. For example, a projective transformation is 

one in which straight lines remain straight, and projective geometry, 

which has been in existence for a long time, studies those properties of 

figures that remain invariant under projective transformations. Ordinary 

projective geometry remains similar, in the problems it investigates, to 

the usual elementary and analytic geometry, whereas “projective dif¬ 

ferential geometry” (the theory of curves, surfaces, and families developed 

at the beginning of the present century) is similar to classical differential 

geometry, except that it studies properties that are invariant under 

projective transformations. Fundamental in this last direction were the 

contributions of the American Wilczynski, the Italian Fubini, and the 

Czech mathematician, Cech. 

In the same way arose “affine differential geometry,” which studies 

the properties of curves, surfaces, and families invariant under affine 

transformations, i.e., under transformations that not only take straight 

lines into straight lines but also preserve parallelism. The work of the 

German mathematician Blaschke and his students developed this branch 

of geometry into a general theory. Let us also mention “conformal 

geometry,” in which one studies the properties of figures invariant under 

transformations that do not change the angles between curves. 

In general, the possible “geometries” are very diverse in character, 

since essentially any group of transformations may serve as the basis of 

a “geometry,” which then studies just those properties of figures that 

are left unchanged by the transformations of the group. This principle 

for the definition of geometries will be discussed further in Chapter XVII. 

Other new directions in differential geometry are being successfully 

developed by Soviet geometers, S. P. Finikov, G. F. Laptev, and others. 

But in our present outline it is not possible to give an account of all 

the various investigations that are taking place nowadays in the different 

branches of differential geometry. 
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VIII 
THE CALCULUS OF 

VARIATIONS 

§!. Introduction 

Examples of variational problems. We will be able to give a clearer 
description of the general range of problems studied in the calculus of 
variations,* if we first consider certain special problems. 

I. The curve of fastest descent. The problem of the brachistochrone, 
or the curve of fastest descent, was historically the first problem in the 
development of the calculus of variations. 

Among all curves connecting the points A/, and A/2, it is required 
to find that one along which a mathematical point, moving under the 
force of gravity from A/,, with no initial velocity, arrives at the point 
in the least time. 

To solve this problem we must consider all possible curves joining M1 
and A/j. If we choose a definite curve /, 
then to it will correspond some definite 
value T of the time taken for the descent 
of a material point along it. The time T 
will depend on the choice of /, and of all 
curves joining A/, and M2 we must 
choose the one which corresponds to 
the least value of T. 

The problem of the brachistochrone 
may be expressed in the following way. 

We draw a vertical plane through the 

* The derivation of the name “calculus of variations” is explained later. 
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Fig. 1. 
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points A/, and M2. The curve of fastest descent must obviously lie in it, 

so that we may restrict ourselves to such curves. We take the point A/, 

as the origin, the axis Ox horizontal, and the axis Oy vertical and 

directed downward (figure I). The coordinates of the point A/, will be 

(0, 0); the coordinates of the point M2 we will call (x2, y2). Let us 

consider an arbitrary curve described by the equation 

y=f(x), 0 (1) 

where f is a continuously differentiable function. Since the curve passes 

through A/, and M2, the function / at the ends of the segment [0, x2] 
must satisfy the condition 

AO) = 0, /(**) = y% ■ (2) 

If we take an arbitrary point M(x,y) on the curve, then the velocity 

v of a material point at this point of the curve will be connected with 

the ^coordinate of the point by the well-known physical relation 

£ v* = gy, 
or 

v = V2gy. 

The time necessary for a material point to travel along an element ds 
of arc of the curve has the value 

ji_vi+2dx 
v V2gy 

and thus the total time of the descent of the point along the curve from 

A/, to A/j is equal to 

T = 
, i*. VT + 2*. 

V2 g\ Vy 
(3) 

Finding the brachistochrone is equivalent to the solution of the following 

minimal problem: Among all possible functions (1) that satisfy conditions 

(2), find that one which corresponds to the least value of the integral (3). 

2. The surface of revolution of the least area. Among the curves 

joining two points of a plane, it is required to find that one whose arc, 

by rotation around the axis Ox, generates the surface with the least area. 

We denote the given points by M1(x1, >>,) and M2(x2, y2) and consider 

an arbitrary curve given by the equation 

y =/(*)■ (4) 
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If the curve passes through M1 and , the function / will satisfy 

the condition 

fki) = yi > /(**) = y* ■ (5) 

When rotated around the axis Ox this curve describes a surface with 

area numerically equal to the value of the integral 

S = 2tt J** v VI + /• dx. (6) 
xi 

This value depends on the choice of the curve, or equivalently of the 

function y = f(x). Among all functions (4) satisfying condition (5) we 

must find that function which gives the least value to the integral (6). 

3. Uniform deformation of a membrane. By a membrane we usually 

mean an elastic surface that is plane in the state of rest, bends freely, 

and does work only against extension. We assume that the potential 

energy of a deformed membrane is proportional to the increase in the 

area of its surface. 

In the state of rest let the membrane occupy a domain B of the Oxy 
plane (figure 2). We deform the 

boundary of the membrane in a 

direction perpendicular to Oxy and 

denote by <f>(M) the displacement of 

the point M of the boundary. Then 

the interior of the membrane is also 

deformed, and we are required to 

find the position of equilibrium of 

the membrane for a given deforma¬ 

tion of its boundary. 

With a great degree of accuracy 

we may assume that all points of the 

membrane are displaced perpendic¬ 

ularly to the plane Oxy. We denote 

by u(x, y) the displacement of the point (x, y). The area of the membrane 

in its displaced position will be* 

//(l + dx dy. 
B 

* Here and everywhere in this chapter we use subscripts to denote the arguments 
with respect to which the partial derivatives are taken. 
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If the deformations of the elements of the membrane are so small that 

we can legitimately ignore higher powers of ux and uv, this expression 

for the area may be replaced by a simpler one: 

// [‘ +{(ul + ul)\dxdy. 
B 

The change in the area of the membrane is equal to 

\ jj(ul + u\)dxdy, 
B 

so that the potential energy of the deformation will have the value 

£ff(ul + iZ)dxdy, (7) 
B 

where n is a constant depending on the elastic properties of the membrane. 

Since the displacement of the points on the edge of the membrane is 

assumed to be given, the function u(x, y) will satisfy the condition 

u\,=<KM) (8) 

on the boundary of the domain B. 
In the position of equilibrium the potential energy of the deformation 

must have the smallest possible value, so that the function u(x, y), de¬ 

scribing the displacement of the points of the membrane, is to be found 

by solving the following mathematical problem: Among all functions 

u(x, y) that are continuously differentiable on the domain B and satisfy 

condition (8) on the boundary, find the one which gives the least value 

to the integral (7). 

Extreme values of functionals and the calculus of variations. These 

examples allow us to form some impression of the kind of problems 

considered, but to define exactly the position of the calculus of variations 

in mathematics, we must become acquainted with certain new concepts. 

We recall that one of the basic concepts of mathematical analysis is 

that of a function. In the simplest case the concept of functional depend¬ 

ence may be described as follows. Let M be any set of real numbers. 

If to every number x of the set M there corresponds a number y, we say 

that there is defined on the set M a function y = /(*). The set M is often 

called the domain of definition of the function. 

The concept of a functional is a direct and natural generalization of 

the concept of a function and includes it as a special case. 
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Let M be a set of objects of any kind. The nature of these objects is 

immaterial at this time. They may be numbers, points of a space, curves, 

functions, surfaces, states or even motions of a mechanical system. For 

brevity we will call them elements of the set M and denote them by the 

letter x. 

If to every element x of the set M there corresponds a number y, we 

say that there is defined on the set M a functional y = F(x). 
If the set M is a set of numbers x, the functional y = f\x) will be a 

function of one argument. When M is a set of pairs of numbers (x,, x2) 

or a set of points of a plane, the functional will be a function y = F(x1, x2) 

of two arguments, and so forth. 

For the functional y = F(x), we state the following problem: 

Among all elements x of M find that element for which the functional 

y — f\x) has the smallest value. 

The problem of the maximum of the functional is formulated in the 

same way. 

We note that if we change the sign in the functional F(x) and consider 

the functional —F{x), the maximum (minimum) of F(x) becomes the 

minimum (maximum) of —f{x). So there is no need to study both 

maxima and minima; in what follows we will deal chiefly with minima 

of functionals. 

In the problem of the curve of fastest descent, the functional whose 

minimum we seek will be the integral (3), the time of descent of a material 

point along a curve. This functional will be defined on all possible functions 

(1), satisfying condition (2). 

In the problem of the position of equilibrium of a membrane, the 

functional is the potential energy (7) of the deformed membrane, and 

we must find its minimum on the set of functions u(x, y) satisfying the 

boundary condition (8). 

Every functional is defined by two factors: the set M of elements x 
on which it is given and the law by which every element x corresponds 

to a number, the value of the functional. The methods of seeking the 

least and greatest values of a functional will certainly depend on the 

properties of the set M. 
The calculus of variations is a particular chapter in the theory of 

functionals. In it we consider functionals given on a set of functions, 

and our problem consists of the construction of a theory of extreme 

values for such functionals. 

This branch of mathematics became particularly important after the 

discovery of its connection with many situations in physics and mechanics. 

The reason for this connection may be seen as follows. As will be made 

clear later, it is necessary, in order that a function provide an extreme 
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value for a functional, that it satisfy a certain differential equation. 

On the other hand, as was mentioned in the chapters describing dif¬ 

ferential equations, the quantitative laws of mechanics and physics are 

often written in the form of differential equations. As it turned out, 

many equations of this type also occurred among the differential equations 

of the calculus of variations. So it became possible to consider the' equa¬ 

tions of mechanics and physics as extremal conditions for suitable 

functionals and to state the laws of physics in the form of requiring an 

extreme value, in particular a minimum, for certain quantities. New points 

of view could thus be introduced into mechanics and physics, since 

certain laws could be replaced by equivalent statements in terms of 

“minimal principles.” This in turn opened up a new method of solving 

physical problems, either exactly or approximately, by seeking the minima 

of corresponding functionals. 

§2. The Differential Equations of the Calculus of Variations 

The Euler differential equation. The reader will recall that a necessary 

condition for the existence of an extreme value of a differentiable function 

/ at a point x is that the derivative /' be equal to zero at this point: 

/'(•*) = 0; or what amounts to the same thing, that the differential of 

the function be equal to zero here: df — f'(x)dx = 0. 

Our immediate goal will be to find an analogue of this condition in the 

calculus of variations, that is to say, to set up a necessary condition 

that a function must satisfy in order to provide an extreme value for a 

functional. 

We will show that such a function must satisfy a certain differential 

equation. The form of the equation will depend on the kind of functional 

under consideration. We begin with the so-called simplest integral of the 

calculus of variations, by which we mean a functional with the following 

integral representation: 

f(y) = / ’ F(x, y, /) dx. 
xl 

(9) 

The function F, occuring under the integral sign, depends on three 

arguments (x, y, y'). We will assume it is defined and is twice continuously 

differentiable with respect to the argument y' for all values of this 

argument, and with respect to the arguments x and y in some domain B 
of the Oxy plane. Below it is assumed that we always remain in the 

interior of this domain. 
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It is clear that y is a function of x 

y = y(x), (10) 

continuously differentiable on the seg¬ 

ment x, < x < x2, and that y is its 

derivative. 

Geometrically the function y(x) may 

be represented on the Oxy plane by a 

curve / over the interval [x,, xj 

(figure 3). 

The integral (9) is a generalization of 

the integrals (3) and (6), which we 

encountered in the problem of the curve of fastest descent and the 

surface of revolution of least area. Its value depends on the choice of 

the function y(x) or in other words of the curve /, and the problem of 

its minimum value is to be interpreted as follows: 

Given some set M of functions (10) (curves /); among these we must 

find that function (curve /) for which the integral I(y) has the least value. 

We must first of all define exactly the set of functions M for which 

we will consider the value of the integral (9). In the calculus of variations 

the functions of this set are usually called admissible for comparison. 

We consider the problem with fixed boundary values. The set of admissible 

functions is defined here by the following two requirements: 

1. y{x) is continuously differentiable on the segment [x,, x2]; 

2. At the ends of the segment Xx) has values given in advance 

Axi) = >’,, Xxz) = yt. (II) 

Otherwise the function y(x) may be completely arbitrary. In the language 

of geometry, we are considering all possible smooth curves over the 

interval [x, , xj, which pass through the two points A(xt, .y,) and 

B(xt,yt) and can be represented by the equation (10). The function 

giving the minimum of the integral will be assumed to exist and we will 

call it ,y(x). 

The following simple and ingenious arguments, which can often be 

applied in the calculus of variations, lead to a particularly simple form 

of the necessary condition which j<x) must satisfy. In essence they allow 

us to reduce the problem of the minimum of the integral (9) to the problem 

of the minimum of a function. 

We consider the family of functions dependent on a numerical para¬ 

meter a, 

Fig. 3. 

y(x) = Xx) + ccrj(x). (12) 
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In order that y(x) be an admissible function for arbitrary a, we must 

assume that tj(x) is continuously differentiable and vanishes at the ends 

of the interval [x,, x2J. 

= v(*t) = o. (13) 

The integral (9) computed for y will be a function of the parameter a 

I(y) = / * F(x, y + ccr,, y + aij') dx = 0(a). * 

Since y(x) gives a minimum to the value of the integral, the function 

0(a) must have a minimum for a = 0, so that its derivative at this point 

must vanish 

tf'(0) = J ’ [f,(jr. y. /) rj + F¥,(x, y, /) rj') dx = 0. (14) 
Z1 

This last equation must be satisfied for every continuously differentiable 

function tj(x) which vanishes at the ends of the segment [x,, x2]. In order 

to obtain the result which follows from this, it is convenient to transform 

the second term in condition (14) by integration by parts 

J ’ Fv.r)' dx = - j ‘ v dx 
*i *1 

so that condition (14) takes the new form 

0'(O) = f'(Fv-±Fy,)r,dx = 0. (15) 
*i 

It may be shown that the following simple lemma holds. 

Let the following two conditions be fulfilled: 

1. The function f{x) is continuous on the interval [a, b]\ 

2. The function i?(x) is continuously differentiable on the interval 

[a, b] and vanishes at the ends of this interval. 

If for an arbitrary function tj(x) the integral jt/(x) tj(x) dx is equal 

to zero, then it follows that /(x) = 0. 

* The difference y — y = orq is called the variation (change) of the function y and 
is denoted by 8y, and the difference l(y) — l(y) is called the total variation of the 
Integral (9). Hence we get the name calculus of variations. 
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For let us assume that at some point c the function/is different from 

zero and show that then a function q(x) necessarily exists for which 

jt/W v(x) dx ^ 0, in contradiction to the 

condition of the lemma. 

Since/(c) 0 and/is continuous, there 

must exist a neighborhood [a, /3] of c in 

which / will be everywhere different from 

zero and thus will have a constant sign 

throughout. 

We can always construct a function 

r](x) which is continuously differentiable 

on [a, b], positive on [a, /3], and equal to 

zero outside of [a, /3] (figure 4). 

O JL 
1 c (3 b 

Fig. 4. 

Such a function q(x), for example, is defined by the equations 

1° 
on [o, «], 

V(x) = \(X - «)\P - X)’ on l®» Pi> 
:o on W. b). 

But for such a function q(x) 

f'fl dx = J fa dx. 

The latter of these integrals cannot be equal to zero since, in the interior 

of the interval of integration, the product fy is different from zero and 

never changes its sign. 

Since equation (15) must be satisfied for every q(x) that is continuously 

differentiable and vanishes at the ends of the segment [x,, x2], we may 

assert, on the basis of the lemma, that this can occur only in the case 

F, = 0, (16) 

or, by computing the derivative with respect to x 

y, /) — Fry.(x, y, /) — F„,(x, y, /)/ — F,ly.(x, y, y')y" = 0. (17) 

This equation is a differential equation of the second order with respect 

to the function y. It is called Euler's equation. 

We may state the following conclusion. 

If a function y(x) minimizes the integral I(y), then it must satisfy 

Euler’s differential equation (17). In the calculus of variations, this last 

statement has a meaning completely analogous to the necessary condition 
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df = 0 in the theory of extreme values of functions. It allows us im¬ 

mediately to exclude all admissible functions that do not satisfy this 

condition, since for them the integral cannot have a minimum, so that 

the set of admissible functions we need to study is very sharply reduced. 

Solutions of equation (17) have the property that for them the derivative 

[(d/d<x)l(y + °°7)]a-0 vanishes for arbitrary rj(x), so that they are analo¬ 

gous in meaning to the stationary points of a function. Thus it is often 

said that for solutions of (17) the integral I(y) has a stationary value. 

In our problem with fixed boundary values, we do not need to find 

all solutions of the Euler equation but only those which take on the 

values yt, y2 at the points x, , x2. 

We turn our attention to the fact that the Euler equation (17) is of 

the second order. Its general solution will contain two arbitrary constants 

y = <f>(x, C,, C2). 

These must be defined so that the integral curve passes through the points 

A and B, so we have the two equations for finding the constants C, and C2 

<K*i > Q • Q = yx, <ftxj . Q , Cj) = y2. 

In many cases this system has only one solution and then there will 

exist only one integral curve passing through A and B. 

The search for functions giving a minimum for this integral is thus 

reduced to the solution of the following boundary-value problem for 

differential equations: On the interval [x,, x2] find those solutions of 

equation (17) that have the given values y, , y2 at the ends of the interval. 

Frequently this last problem can be solved by using known methods 

in the theory of differential equations. 

We emphasize again that every solution of such a boundary-value 

problem can provide only a suspected minimum and that it is necessary 

to verify whether or not it actually does give a minimum value to the 

integral. But in particular cases, especially in those occurring in the 

applications, Euler’s equation completely solves the problem of finding 

the minimum of the integral. Suppose we know initially that a function 

giving a minimum for the integral exists, and assume, moreover, that 

the Euler equation (17) has only one solution satisfying the boundary 

conditions (11). Then only one of the admissible curves can be a suspected 

minimum, and we may be sure, under these circumstances, that the 

solution found for the equation (17) indeed gives a minimum for the 

integral. 

Example. It was previously established that the problem of the curve 
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of fastest descent may be reduced to finding the minimum of the integral 

iw-fVESL* 
Jo vy 

among the set of functions satisfying the boundary conditions 

MO) = 0, y(x2) = y2. 

In this problem 

Euler’s equation has the form 

- Vl + v'* - — [>'—*/*—t===—1 = 0. 

After some manipulation it takes the form 

2/ _ 1 
1 +/* 

Multiplying both sides of the equation by y' and integrating, we get 

ln(l + y'*) = — In + In A:, 

4r^vd>~±dx- 
Now letting 

k . 
y = 2 (1 — cos «), rfy = j s>n « 

we find after substituting and simplifying 

fa 
^(1— cos u) du = ± dx, 

from which, by integrating, we get: jc = ± k/2 (u — sin u) + C. Since 

the curve must pass through the origin, it follows that we must put C = 0. 

In this way we see that the brachistochrone is the cycloid 

fa fa 
x = 2 (“ — sin “). y = 2 0 — cos «)• 
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The constant k must be found from the condition that this curve passes 

through the point A/2(x2, yt). 

Functionals depending on several functions. The simplest functional 

in the calculus of variations (17) depended on only one function. In the 

applications such functionals will occur in those cases where the objects 

(or their behavior) are defined by only one functional dependence. For 

example, a curve in the plane is defined by the dependence of the ordinate 

of a point on its abscissa, the motion of a material point along an axis 

is defined by the dependence of its coordinate on time, etc. 

But we must often deal with objects that cannot be defined so simply. 

In order to define a curve in space, we must know the functional de¬ 

pendence of two of its coordinates on the third. The motion of a point 

in space is defined by the dependence of its three coordinates on time, 

etc. Study of these more complicated objects leads to variational problems 

with several varying functions. 

We will restrict ourselves to cases in which the functional depends on 

two functions y(x) and z(x), since the case of a larger number of functions 

does not differ in principle from this one. 

We consider the following problem. Admissible pairs of functions 

y(x) and z(x) are defined by the conditions: 

1. The functions 

y = y(x), z = z(x) (18) 

are continuously differentiable on the segment [x,, xsJ; 

2. At the ends of the segment these functions have given values 

y(*j) = y\. Axt) = y2, 

Z(xt) = z,, z(x2) = z2. (19) 

Among all possible pairs of functions y(x) and z(x), we must find the 

pair that gives the least value to the integral 

I(y, z) = f’ F(x, y, z, y\ z') dx. (20) 

In the three-dimensional space x, y, z, each pair of admissible functions 

will correspond to a curve /, defined by equations (18) and passing through 

the points 
Mi(xt, yx, z,), A/2(x2 , yz , z2). 

We must find the minimum of the integral (20) on the set of all such 

curves. 
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We assume that the pair of functions giving the minimum of the integral 

(20) exists, and we will call these functions y(x) and z(x). Together with 

them we consider a second pair of functions 

y = y + *r](x), z = z + ot£(x), 

where -q(x) and £(x)are any continuously differentiable functions vanishing 

at the ends x,, x2 of the segment; y, z will also be admissible, and for 

a = 0 they will coincide with the functions y, z. We substitute them in (20) 

Ky> *) — J * F(x, ^ + Cnj, z + a£, / + (XT)', z' + a£') dx = 0{a). 
*i 

The integral so derived will be a function of a. Since y and z coincide 

with y and z when a = 0, the function <Z>(a) must have a minimum for 

a = 0. But at a minimum point the derivative of 0 must vanish 

<P'(0) = 0. 

Computing the derivative gives 

rj +F,-i + F,,rj' + F,,ndx = 0, 

or, if the terms in -q' and l,' are integrated by parts 

P [(F* “ fxF') V(X) + {F‘~Tx F*') M dx = °- 

This last equation must be satisfied for any two continuously differentiable 

functions rj(x) and £(x) vanishing at the ends of the interval. Hence, from 

the basic lemma proved earlier, the following two conditions must be 

fulfilled: 

(21) 

Hence, if the functions y, z give a minimum for the integral (20), they 

must satisfy the system of Euler differential equations (21). 

This result again allows us to replace a variational problem for the 

minimum of the integral (20) by a boundary-value problem in the theory 

of differential equations: On the interval [x,, x2], we must find those 

solutions y, z of the system of differential equations (21) that satisfy 

the boundary conditions (19). 
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As in the preceding case, this opens up a possible path for the solution 

of the minimal problem. 

As an example of an application of the Euler system (21), let us consider 

the variational principle of Ostrogradskil-Hamilton in Newtonian me¬ 

chanics. We restrict ourselves to the simplest form of this principle. 

We consider a material body of mass m and assume that the dimensions 

and form of the body may be ignored, so that we may consider it as a 

material point. 

We assume that the point moves from its position A/,(x, , .y,, z,) at 

time f, to the position , yt, z2) at time t2. We also assume that 

the motion occurs under the laws of Newtonian mechanics and is caused 

by application of a force F(x, y, z, t) which depends on the position of 

the point and on the time t and possesses a potential function U(x, y, z, t). 

This last condition means the following: the components Fx, Fv, F, of 

the force F along the coordinate axes are the partial derivatives of a 

function U with respect to the corresponding coordinates 

_ du _ du _ eu 
1 8x ’ * dy * * 8z ' 

We assume the motion to be free, that is, not subject to any kind of 

constraints.* 

The equations of motion of Newton are 

d*x 8U d*y 8U d*z 8U 

m dt* 8x m dt* 8y'm dt* 8z 

If the point obeys the laws of Newtonian mechanics, it moves in a 

completely determined manner. But together with these “Newtonian 

motions” of the point, let us consider other (non-Newtonian) motions, 

which for brevity we will call “admissible,” and which will be defined 

by two requirements only, that at time f, the point is in the position A/, 

and at time t2 is in the position M2. 

How can we distinguish the “Newtonian motion” of the point from 

these other “admissible” motions? Such a possibility is given by the 

Ostrogradskil-Hamilton principle. 

We introduce the kinetic energy of the point 

T = im(x’* + /* + z’*) 

* This is not essential for the Ostrogradskii-Hamilton principle: We may impose 
any restraints we like on the mechanical system, even nonstationary ones, provided 
only that they are holonomic, i.e., that they may be described in the form of equations 
not containing derivatives of the coordinates with respect to time. 
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and form the so-called action integral 

/= C\T+U)dt. 

The principle states: The “Newtonian motion” of the point is distin¬ 

guished among all its “admissible” motions by the fact that it gives the 

action integral a stationary value. 

The action integral / depends on three functions: x(l), y(t), z(t). 

Since for all the motions under comparison the initial and final positions 

of the point are identical, the boundary values of these functions are 

fixed. We are dealing here with a variational problem for three varying 

functions with fixed values at the ends of the interval [/, , /2], 

Previously we agreed to say that the integral (17) has a stationary 

value for any curve which is an integral curve of the Euler equation. 

In our problem we are integrating a function 

F = T + U= + y'* + z'*) + U(x, y, z, l) 

which depends on three functions, so that for a stationary value of the 

integral we must satisfy the system of three differential equations 

Fx — 

Fy~ 

F, - 

Since Fx = dU/dx, Fx, = mx', ••• , the system of Euler equations is 

identical with the equations of motion of Newtonian mechanics, which 

provides a verification of the Ostrogradskil-Hamilton principle. 

The minimum problem for a multiple integral. The last problem in 

the calculus of variations to which we wish to draw the attention of the 

reader is the problem of minimizing a multiple integral. Since the facts 

connected with the solution of such problems are similar for integrals 

of any multiplicity, we will confine ourselves to the simplest case, that 

of double integrals. 

Let B be a domain in the Oxy plane, bounded by the contour /. The set 

of admissible functions is defined by the conditions: 

1. u(x, y) is continuously differentiable on the domain B, 

2. On / the function u takes given values 

u l« =AM). (22) 



134 Vm. THE CALCULUS OF VARIATIONS 

Among all functions we must find the one which gives a minimum 

value for the integral 

I(u) = || F(x, y.u.Ux, uy) dx dy. (23) 
B 

The given boundary values (22) for the function u in the space (x, y, u) 

determine a given space curve r, lying above / (cf. figure 2, Chapter VII). 

We consider all possible surfaces S passing through Tand lying above B. 

Among these we want to find the one for which the integral (23) is minimal. 

As before, we assume the existence of the minimizing function and 

denote it by u. At the same time we consider another function 

U = U + otri(x, y), 

where tj(x, y) is any continuously differentiable function vanishing on /. 

Then the function 

Iifi) =|| F(x, y, u + ocV, uz + <xr/x , uv + ooj,) dx dy = <P{oc) 
B 

must have a minimum for a = 0. In this case its first derivative must be 

equal to zero for a = 0 

0'(O) = 0, 

or 

11 (FuV + fu.ryz + FUrV,) dx dy = 0. (24) 
B 

We transform the last two terms by Ostrogradskifs formula 

|| (.Fu.Vx + FUtVv) dx dy 
B 

= // [~L {Fu’1l) + Yy dx dy - // (i f“* + fv V dx dy 

= ) [FUi cos (n, x) + FUt cos (n, y)) rj ds 
J i 

- IJ(-yf'“ +v dxdy- 

The contour integral along / must vanish, since on the contour / the 

function rj is equal to zero, so that condition (24) may be put in the form 

\j(F'-TxF**-hF^r,dxdy = 0- 
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This equation must be satisfied for every function 17 which is continuously 

differentiable and vanishes on the boundary /. 

We may conclude, as before, that all points of the domain B the equation 

Fu- = 0 (25) 

must be satisfied. 

So if the function u gives a minimum for the integral (23), it must 

satisfy the partial differential equation (25). 

As in all the preceding problems, we have here established a connection 

between a variational problem of minimizing an integral and a boundary- 

value problem for a differential equation (in this case partial). 

Example. The displacement u(x, y) of points of a membrane with a 

deformed boundary is to be found from the condition of the minimum 

of the potential energy 

f jj(ul + *)dxdy 
B 

for the given boundary values u |,. = <f>. 

Omitting, for simplicity, the constant factor fi, we may set 

f = I(«4 + «4), 

so that equation (25) has the form 

or 

= 0, 

dhi Shi . 
Au =--= 0. 

dx2 dy2 

Thus the problem of determining the displacement of the points of a 

membrane has been reduced to that of finding a harmonic function u 

with given values on the boundary of the domain (cf. Chapter VI, §3). 

§3. Methods of Approximate Solution of Problems in the 

Calculus of Variations 

We conclude the present chapter with an indication of the ideas involved 

in some of the approximation methods in the calculus of variations. 
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For definiteness we discuss the simplest functional 

I(y) = f* T(x, y, y) dx 
zi 

for fixed boundary values of the admissible functions. 

Let y(x) be an exact solution of the problem of minimizing /, with 

m — I(y) the corresponding minimal value of the integral. It would 

appear that if we determine an admissible function y for which the value 

of the integral I(y) is very near to m, we may assume that y will also 

differ little from the exact solution y. Moreover, if we are able to construct 

a sequence of admissible functions yx ,yt, ••• for which I(y„)-+m, we 

may expect that such a sequence will converge in some sense or other 

to the solution y, so that computation of yn with sufficiently large index 

will allow us to find the solution to any desired degree of accuracy. 

Depending on how we go about choosing the “minimizing sequence” 

y„(n = 1, 2, •••), we will have one or another of the various approximation 

methods in the calculus of variations. 

Historically, the first of these was the method of broken lines, or 

Euler’s method. We decompose the interval [x,, x8] into a number of 

segments. For example, if we choose these segments of equal length, 

the points of division will be 

x,, x, + h, x, + 2h, —, x, + nh = xt, h = X- - — . 

We now construct the broken line p„_, with vertices lying above the points 

of division. The ordinates of the vertices we denote by 

60.6,, , ••• , b„_,, b„ 

and require that this broken line begin and end at the same points as 

the admissible curves, so that b„ = yt and bn = yt. Then the broken 

line will be defined by the ordinates 

bi, bt, • ••, bn_,. 

The question now is to find out how to choose the broken line 

(i.e., the ordinates b{ of its vertices) so as to approximate as closely as 

possible the exact solution of the problem. 

To achieve this object it is natural to proceed as follows. We compute 

the integral / for the broken line. Its value will depend on the b{ 

bn. J 
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and will therefore be a function of these ordinates. We now choose the 

b, so that they give /(/>„_j) a minimum value. To define these b{ we will 

have the system of equations 

^= 0 (/= 1,2, •••, n — 1). 

Since any admissible curve, and in particular the exact solution of the 

problem, may be approximated by broken lines with any desired accuracy, 

both in its position on the plane and in the directions of its tangents, 

it is clear that the sequence of broken lines thus constructed will, 

in fact, be a minimizing sequence. By taking n sufficiently large, we may 

expect to approximate the solution with any desired degree of accuracy 

over the whole interval [x,, xj. Of course, the fact of convergence must 

be investigated in each case. 

The following method, which is very convenient for calculation, is 

widely used in physics and technology. 

We choose any function <£0(x) satisfying the boundary conditions 

^o(*i) — >i and </>0(Xi) = yt, and a sequence of functions <£,(x), <f>2(x), 

vanishing at the ends of the interval [x,, xj. 

We then form the linear combination 

*n(x) = <f>0(x) + fl,^,(x) + — + a„4>n(x). 

For arbitrary values of the numerical coefficients a,, at, ••• , an , the 

function s„(x) will be admissible. 

Replacing y by sn(x) in the integral / and making the necessary computa¬ 

tions, we obtain a certain function of the coefficients a, . 

We now choose the a{ so that this function has the least possible value. 

The coefficients must be found from the system 

^-/(5b) = 0 (/= 1,2,-, n). 

Solving this system, we obtain, in general, the values of the coefficients 

a,, ••• , an producing a minimum value for I(s„) and with them weconstruct 

an approximation to the solution 

In(x) = <t>„(x) + <*,<£,(X) + •" + ^n<t>n(x)- 

The sequence of approximations s„ (rt = 1, 2, •••) constructed in this 

way will not be a minimizing sequence for arbitrary choice of the func¬ 

tions ij>(. The necessary condition for it to be so is that the sequence 

of functions <f>, satisfy a certain condition of “completeness” which we 

will not define here. 
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CHAPTER IX 
FUNCTIONS 

OF A COMPLEX VARIABLE 

§1. Complex Numbers and Functions of a Complex Variable 

Complex numbers and their significance in algebra. Complex numbers 

were introduced into mathematics in connection with the solution of 

algebraic equations. The impossibility of solving the algebraic equation 

x* + I = 0 (1) 

in the domain of real numbers led to the introduction of a conventional 

number, the imaginary unit /, defined by the equation 

t1 = -1- (2) 

Numbers of the form a + bi, where a and b are real numbers, were 

called complex numbers. These numbers were manipulated like real 

numbers, being added and multiplied as binomials. If we also make use 

of equation (2), the basic operations of arithmetic when carried out on 

complex numbers produce other complex numbers.* The division of 

complex numbers being defined as the inverse of multiplication, it turns out 

that this operation also is uniquely defined, provided only that the 

denominator is not equal to zero. In this manner, the introduction of 

complex numbers first brought to light the interesting, though for the 

time being purely formal, fact that in addition to the real numbers there 

exist other numbers, the complex ones, on which all the arithmetic opera¬ 

tions can be performed. 

* Complex numbers are known to the reader from secondary school. See also 
Chapter IV, §3. 

139 
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The next step consists of the geometric representation of complex 

numbers. Every complex number a -f bi may be represented by a point 

in the Oxy plane with coordinates (a, b), or by a vector issuing from the 

origin to the point (a, b). This led to a new point of view concerning 

complex numbers. Complex numbers are pairs (a, b) of real numbers 

for which there are established definitions of the operations of addition 

and multiplication, obeying the same laws as for real numbers. Here we 

discover a remarkable situation: The sum of two complex numbers 

(a + bi) + (c + di) = (a + c) + (b + d)i 

is represented geometrically by the diagonal of the parallelogram con¬ 

structed from the vectors representing the summands (figure 1). In this 

way, complex numbers are added by the 

same law as the vector quantities found in 

mechanics and physics: forces, velocities, 

and accelerations. This was a further 

reason for considering that complex 

numbers are not merely formal generaliza¬ 

tions but may be used to represent actual 

physical quantities. 

We will see later how this point of view 

is very successful in various problems of 

mathematical physics. 

However, the introduction of complex 

numbers had its first successes in the discovery of the laws of algebra and 

analysis. The domain of real numbers, closed with respect to arithmetic 

operations, was seen to be not sufficiently extensive for algebra. Even 

such a simple equation as (1) does not have a root in the domain of real 

numbers, but for complex numbers we have the following remarkable 

fact, the so-called fundamental theorem of algebra: Every algebraic 

equation 

z" + a,*"-1 + - + a„_,z + o„ = 0 

with complex coefficients has n complex roots.* 

This theorem shows that the complex numbers form a system of 

numbers which, in a well-known sense, is complete with respect to the 

operations of algebra. It is not at all trivial that adjoining to the domain 

of real numbers a root of the single equation (1) leads to the numbers 

a + bi in whose domain any algebraic equation is solvable. The funda¬ 

mental theorem of algebra showed that the theory of polynomials, even 

Cf. Chapter IV, §3. 
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with real coefficients, may be given a finished form only when we consider 

the values of the polynomial in the whole complex plane. The further 

development of the theory of algebraic polynomials supported this point 

of view more and more. The properties of polynomials are discovered 

only by considering them as functions of a complex variable. 

Power series and functions of a complex variable. The development 

of analysis brought to light a series of facts showing that the introduction 

of complex numbers was significant not only in the theory of polynomials 

but also for another very important class of functions, namely those which 

are expandable in a power series 

f(x) = a0 + at(x -a) + at(x - a)* + (3) 

As was already mentioned in Chapter II, the development of the infini¬ 

tesimal analysis required the establishment of a more precise point of 

view for the concept of a function and for the various possibilities of 

defining functions in mathematics. Without pausing here to discuss these 

interesting questions, we recall only that at the very beginning of the 

development of analysis it turned out that the most frequently encountered 

functions could be expanded in a power series in the neighborhood of 

every point in their domain of definition. For example, this property 

holds for all the so-called elementary functions. 

The majority of the concrete problems of analysis led to functions that 

are expandable in power series. On the other hand, there was a desire to 

connect the definition of a “mathematical” functions with a “mathema¬ 

tical" formula, and the power series represented a very inclusive kind 

of “mathematical” formula. This situation even led to serious attempts 

to restrict analysis to the study of functions that are expandable in 

power series and thus are called analytic functions. The development 

of science showed that such a restriction is inexpedient. The problems of 

mathematical physics began to extend beyond the class of analytic 

functions, which does not even include, for example, functions represented 

by curves with a sharp corner. However, the class of analytic functions, 

in view of its remarkable properties and numerous applications, proved 

to be the most important of all the classes of functions studied by mathe¬ 

maticians. 

Since the computation of each term of a power series requires only 

arithmetic operations, the values of a function represented by a power 

series may be computed also for complex values of the argument, at 

least for those values for which the series is convergent. When we thus 

extend the definition of a function of a real variable to complex arguments, 

we speak of the “continuation” of the function into the complex domain. 
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Thus an analytic function, in the same way as a polynomial, may be 

considered not only for real values of the argument but also for complex. 

Further, we may also consider power series with complex coefficients. 

The properties of analytic functions, as also of polynomials, are fully 

revealed only when they are considered in the complex domain. To illustrate 

we turn now to an example. 

Consider the two functions of a real variable 

e* and 
1 

1 +X2 ' 

Both these functions are finite, continuous, and differentiable an arbitrary 

number of times on the whole axis Ox. They may be expanded in a 

Taylor series, for example, around the origin x = 0 

X xi 

eZ=l+lT+U- + ~’ 

= 1 — X* + X* — X* + 
1 +** 

(4) 

(5) 

The first of the series so obtained converges for all values of x, while 

the second series converges only for —1 < x < +1. Consideration of 

the function (5) for real values of the argument does not show why its 

Taylor series diverges for \ x \ ^ I. Passing to the complex domain 

allows us to clear up the situation. We consider the series (5) for complex 

values of the argument 

1 — z1 + z* — z* + —. (6) 

The sum of n terms of this series 

s„ = 1 - z* + z* - 2* + - + (-l)"-‘z*"-* 

is computed in the same way as for real values of z: 

sn + z2s„ = 1 + (-l)V", 

hence 

1 +(-\)nzin 

1 + z2 

This expression shows that for | z \ < 1 

in = 

lim s„ = 
1 

1 + z* ’ 
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since | z |2n -*■ 0. Thus for complex z satisfying the inequality | z \ < 1 
the series (6) converges and has the sum 1/(1 + z2). For | z | > 1 the 
series (6) diverges, since in this case the difference — j„_, = (—l)n-Iz2"-2 
does not converge to zero. 

The inequality | z | < 1 shows that the point z is located at a distance 
from the origin which is less than one. Thus the points at which the 
series (6) converges form a circle in the complex plane with center at 
the origin. On the circumference of this circle there lie two points l and 
—/ for which the function 1/(1 + z2) becomes infinite; the presence of 
these points determines the restrictions on the domain of convergence 
of the series (6). 

The domain of convergence of a power series. The domain of con¬ 
vergence of the power series 

o0 + - a) + fl2(z - n)2 + - + a„(z — a)n + ••• (7) 

in the complex plane is always a circle with center at the point a. 
Let us prove this proposition, which is called Abel's theorem. 
First of all we note that a series whose terms are the complex numbers wn 

", + + - + *■„ + •••, (8) 

may be considered as two series, consisting of the real parts and the 
imaginary parts of the number wn = un + ivn 

«, + + ", (9) 

+ »*+ “* + »•+'“. (10) 
A partial sum sn of the series (8) is expressed by the partial sums o„ 
and r„ of the series (9) and (10) 

S„ = On + ir„, 

so that convergence of the series (8) is equivalent to convergence of both 
the series (9) and (10), and the sum s of the series (8) is expressed by the 
sums a and t of the series (9) and (10) 

s = a + It. 

After these remarks the following lemma is obvious: 
If the terms of the series (8) are less in absolute value than the terms 

of a convergent geometric progression 

A + Aq + ••• + Aq" + ••• 

with positive A and q, where q < 1, then the series (8) converges. 
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For if | *vn | < Aq", then 

I un | = | w„ | < Aq", 

I P« I = I »-„ | < Aq", 

so that (cf. Chapter II, §14) the series (9) and (10) converge and thus the 

series (8) also converges. 

We now show that if the power series (7) con¬ 

verges at some point z0, then it converges at all 

points lying inside the circle with center at a and 

having z0 on its boundary (figure 2). From this 

proposition it follows readily that the domain of 

convergence of the series (7) 

°o + °i(z — a) H-h an(z - a)” + — 

Fig. 2. is either the entire plane, or the single point z = a, 

or some circle of finite radius. 

For let the series (7) converge at the point z0 ; then the general term 

of the series (7) for z = z0 converges to zero for n -* oo, and this means 

that all the terms in the series (7) lie inside some circle; let A be the radius 

of such a circle, so that for any n 

\a«(,z0 A. (11) 

We now take any point z closer than z0 to a and show that at the point z 

the series converges. 

Obviously 

| z - a | < I z0 - a |, 

so that 

9 = 

\2-a\ 

20~o\ 
< 1. (12) 

Let us estimate the general term of the series (7) at the point z 

| o„(z - a)n | = o„(z0 - a)n (—-| = | an(z0 - a)” \ (■; 
' z0 — a > \ \ | z0 - a | / 

from inequalities (11) and (12) it follows that 

| a„(z — a)” | < Aq"; 

i.e., the general term of the series (7) at the point z is less than the general 
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term of a convergent geometric progression. From the basic lemma 

above, the series (7) converges at the point z. 

The circle in which a power series converges, and outside of which it 

diverges, will be calJed the circle of convergence; the radius of this circle 

is called the radius of convergence of the power series. The boundary of 

the circle of convergence, as may be shown, always passes through the 

point of the complex plane nearest to a at which the regular behavior 

of the function ceases to hold. 

The power series (4) converges on the whole complex plane; the power 

series (5), as was shown above, has a radius of convergence equal to one. 

Exponential and trigonometric functions of a complex variable. A power 

series may serve to “continue” a function of a real variable into the 

complex domain. For example, for a complex value of z we define the 

function e* by the power series 

e, = ,+Tr+ir+"- (13) 
In like manner the trigonometric functions of a complex variable are 

introduced by 

,in * “ 7T _ IT + IT — ’ (l4) 

cosz=i_jl + -£l_.... (15) 

These series converge on the whole plane. 

It is interesting to note the connection which occurs between the 

exponential and trigonometric functions when we turn to the complex 

domain. 

If in (13) we replace z by /z, we get 

e*t 

Grouping everywhere the terms without the multiplier » and the terms 

with multiplier /, we have 

e*1 = cos z + / sin z. (16) 

Similarly we can derive 

e~il = cos z — i sin z. (16') 
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Formulas (16) and (16') are called Euler’s formulas. Solving (16) and 

(16') for cos z and sin z, we get 

cos z = 
e“ + e~ 

sin z = 
e“ — e~u 

07) 

2/ 

It is very important that for complex values the simple rule of addition 

of exponents continue to hold 

e*\ • e1* — e*«+*». (18) 

Since for complex values of the argument we define the function e‘ 

by the series (13), formula (18) must be proved on the basis of this 

definition. We give the proof: 

We will carry out the multiplication of series termwise. The terms 

obtained in this multiplication of series may be written in the form of a 

square table 

1*1 + 1 

- +Jl. i +_£>-._£l + _£l._£L + _£i_.jL + 
T 1! T 1! 1! 1! 2! T 1! 3! 

-t T2 7 T2 T2 72 73 iL.-i+ _£«_._£2-+3_..£2-+Ji-._£l + 
2! T 2! 1! 2! 2! T 2! 3! 

... + iL.i+JL._£L + _£L.JL + JL 
3! 3! I! 3! 2! 3! 

We now collect the terms which have the same sum of powers of z1 

and zt. It is easy to see that such terms lie on the diagonals of our table. 

We get 

^ • *•* = i + (-fr + -yr) + (if- ^-jt-tt + -fr) + - (19) 
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The general term of this series will be 

_£*_ 4. z* z‘ I zi zi 1_4. _£l_ 
n! ' (n — 1)! 1! (n-2)! 2! n! 

= —(zn 4-—-z’1-1 z H-—-zn_* z* 4- ••• + zn^ . 
n\ r* ^ l!(n - 1)! 8 * ^ 2!(« - 2)! » 1 + + >/ 2\(n - 2)! 

Applying the binomial formula of Newton, we get the general term in 

the form 

(*i + zj" 
n\ 

So the general term of the series (19) is identical with the general term 

of the series for e‘,+I*, which proves the theorem on the rule for multi¬ 

plication (18). 

The multiplication theorem and Euler’s formula allow us to derive an 

expression for the function e‘ in terms of functions of real variables in 

finite form (without series). Thus, putting 

we get 

and since 

we find that 

z = x + iy, 

e, = gz+i* = gz . ei,t 

eiy = cos y + i sin y, 

e‘ = e*(cos y + i sin y). (20) 

The formula so derived is very convenient for investigating the proper¬ 

ties of the function e‘. We note two of its properties: (1) the function el 

vanishes nowhere; for in fact, e* 9^0 and the functions cosy and siny 

in formula (20) never vanish simultaneously; (2) the function e‘ has 

period 2ni, i.e., 

This last statement follows from the multiplication theorem and the 

equality 

e2'" = cos 2n + i sin 2n = 1. 

The formulas (17) allow us to investigate the functions cos z and sin z 

in the complex domain. We leave it as an exercise for the reader to prove 

that in the complex domain cos z and sin z have period 2n and that the 

theorems about the sine and cosine of a sum continue to hold for them. 
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The general concept of a function of a complex variable and the differen¬ 

tiability of functions. Power series allow us to define analytic functions 

of a complex variable. However, it is of interest to study the basic 

operations of analysis for an arbitrary function of a complex variable 

and in particular the operation of differentiation. Here we uncover very 

deep-lying facts connected with the differentiation of functions of a 

complex variable. As we will see on the one hand, a function, having a 

first derivative at all points in a neighborhood of some point z0 , necessarily 

has derivatives of all orders at z„, and further, it can be expanded in a 

power series centered at this point; i.e., it is analytic. Thus, if we consider 

differentiable functions of a complex variable, we return immediately to 

the class of analytic functions. On the other hand, a study of the derivative 

uncovers the geometric behavior of functions of a complex variable and 

the connections of the theory of these functions with problems in mathe¬ 

matical physics. 

In view of what has been said, we will, in what follows, call a function 

analytic at the point z„ if it has a derivative at all points of some neighbor¬ 

hood of z0. 

We will say, following the general definition of a function, that a 

complex variable h> is a function of the complex variable z if some law 

exists which allows us to find the value of w, given the value of z. 

Every complex number z = x + iy is represented by a point (x, y) on 

the Oxy plane, and the numbers w = u + to will also be represented by 

points on an Ouv plane, the plane of the function. Then from the geometric 

point of view a function of a complex variable w = f(z) defines a law 

of correspondence between the points of the Oxy plane of the argument z 

and points of the Ouv plane of the value w of the function. In other words, 

a function of a complex variable determines a transformation of the 

plane of the argument to the plane of the function. To define a function 

of a complex variable means to give the correspondence between the pairs 

of numbers (x, y) and (u, v); defining a function of a complex variable 

is thus equivalent to defining two functions 

« = <f>(x, y), v = <p(x, y), 

for which, obviously 

w = u + iv = <Kx, y) + *Kx, y). 

For example, if 

w = z2 = (x + iy)* = x* — y* + 2 Ixy, 

then 

u = <t>(x, y) = x* - f, v = <A(x, y) = 2 xy. 
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The derivative of a function of a complex variable is defined formally in 

the same way as the derivative of a function of a real variable. The deriva¬ 

tive is the limit of the difference quotient of the function 

m- JW, (20 

if this limit exists. 

If we assume that the two real functions u and v, making up w = f{z), 

have partial derivatives with respect to x and y, this is still not a sufficient 

condition that the derivative of the function J\z) exists. The limit of the 

difference quotient, as a rule, depends on the direction in which the 

points z' = z -f Az approximate the point z (figure 3). For the existence 

of the derivative f'(z), it is necessary that the limit does not depend on 

the manner of approach of z' to z. Consider, for example, the case when 

z' approaches z parallel to the axis Ox or parallel to the axis Oy. 

In the first case * + 

Az = Ax, | /A/ 

f{z + Az) -f(z) = u(x + Ax, y) - u(x, y) 

+ l[v(x + Ax, y) - v(x, y)J, 

and the difference quotient 

A* 
Fig. 3. 

Az + Az)-f(z) 

Az 

u(x + Ax, y) - u(x, y) v(x + Ax, y) - v(x, y) 

Ax Ax 

for Ax-*- 0 converges to 

du .dv 

8x + 'dx‘ 
(22) 

In the second case 

Az = / Ay, 

and the difference quotient 

Az+Az) -f\z) = _. u(x, y + Ay) - u(x, y) v(x, y + Ay) - v(x, y) 

Az Ay Ay 

leads in the limit to 

dv .du 

dy ' dy' 
(23) 
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If the function w = f(x) has a derivative, these two expressions must 

be equal, and thus 

du _ dv 

8x dy' 

du _ dv 

dy dx' 

(24) 

Satisfying these equations is a necessary condition for the existence 

of the derivative of the function w = u + h>. It can be shown that 

condition (24) is not only necessary but also sufficient (if the functions u 

and v have a total differential). We will not give a proof of the sufficiency 

of conditions (24), which are called the Cauchy-Riemann equations. 

It is easy to establish the fact that the usual rules for differentiating 

functions of a real variable carry over without alteration to functions of 

a complex variable. Certainly this is true for the derivative of the function zn 

and for the derivative of a sum, a product, or a quotient. The method 

of proof remains exactly the same as for functions of a real variable, 

excepting only that in place of real quantities, complex ones are to be 

understood. This shows that every polynomial in z 

w = a0 + atz + - + a„zn 

is an everywhere differentiable function. Any rational function, equal to 

the quotient of two polynomials 

n, = flo+fl,z+ ••+QnZ" 

b0 + bxz + — + bnz” 

is differentiable at all points where the denominator is not zero. 

In order to establish the differentiability of the function w = e‘, we 

may use the Cauchy-Riemann conditions. In this case, on the basis of 

formula (20) 

u = ex cos y, v = e* sin y; 

we substitute these functions in (24) and show that the Cauchy-Riemann 

equations are satisfied. The derivative may be computed, for example 

by formula (22). This gives 

dw 

dz 
e*. 

On the basis of formula (17) it is easy to establish the differentiability of 
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the trigonometric functions and the validity of the formulas known 

from analysis for the values of their derivatives. 

The function Ln z- We will not give here an investigation of all the 

elementary functions of a complex variable. However, it is important 

for our purposes to become acquainted with some of the properties of 

the function Ln z. As in the case of the real domain, we set 

In order to analyze the function Ln z, we write the number z in trigono¬ 

metric form 

z = r(cos <j> + / sin <f>). 

Applying the multiplication theorem to eK, we get 

z = = eu*iv = eueiv = e“(cos v + / sin v). 

Equating the two expressions derived for z, we have 

e“ = r, (a) 

cos v + / sin v = cos <f> + / sin <f>. (fi) 

Since u and r are real numbers, from formula (a) we derive 

u = In r, 

where ln r is the usual value of the natural logarithm of a real number. 

Equation (fi) can be satisfied only if 

cos v = cos <f>, sin v = sin <f>, 

and in this case v and <f> must differ by a number which is a multiple of 2n 

v = <f> + 2nn, 

where for any integer n equation (fi) will be satisfied. On the basis of the 

expressions derived for u and v 

Ln z = In r + i(<f> + 2nn). (25) 

Formula (25) defines the function Ln z for all values of the complex 

number z that are different from zero. It gives the definition of the 
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logarithm not only for positive numbers but also for negative and complex 

numbers. 

The expression derived for the function Ln z contains an arbitrary 

integer n. This means that Ln z is a multiple-valued function. For any 

value of n we get one of the possible values of the function Ln z. If we 

fix the value of n, we get one of the possible values of this function. 

However, the different values of 

Ln z, as can be shown, are organically 

related to one another. In fact, let us 

fix, for example, the value n = 0 at the 

point z„ and then let z move contin¬ 

uously around a closed curve C, 

which surrounds the origin and returns 

to the point z0 (figure 4). During the 

motion of z, the angle <f> will increase 

continuously and when z moves around 

the entire closed contour, <f> will in¬ 

crease by 2n. In this manner, fixing the 

value of the logarithm at z0 

r Tf ■ O 
Fig. 4. 

(Ln z)o = in r0 + ifo 

and changing this value continuously while moving z along the closed 

curve surrounding the origin, we return to the point z„ with another 

value of the function 

(Ln z)o = In r0 + i(<f>0 + 2n). 

This situation shows us that we may pass continuously from one value 

of Ln z to another. For this the point need only travel around the origin 

continuously a sufficient number of times. The point z = 0 is called a 

branch point of the function Ln z. 

If we wish to restrict consideration to only one value of the function 

Ln z, we must prevent the point z from describing a closed curve sur¬ 

rounding the point z = 0. This may be done by drawing a continuous 

curve from the origin to infinity and preventing the point z from crossing 

this curve, which is called a cut. If z varies over the cut plane, then it 

never changes continuously from one value of Ln z to another and thus, 

starting from a specific value of logarithm at any point z„, we get at 

each point only one value of the logarithm. The values of the function 

Ln z selected in this way constitute a single-valued branch of the function 

For example, if the cut lies along the negative part of the axis Ox, 
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we get a single-valued branch of Ln z by restricting the argument to the 

limits 

(2k — \)n < (f> < (2k+ IK 

where k is an arbitrary integer. 

Considering a single-valued branch of the logarithm, we can study its 

differentiability. Putting 

_ y 
r = Vx* -f y®, <j> = arc tan ^, 

it is easy to show that Ln z satisfies the Cauchy-Riemann conditions and 

its derivative, calculated for example by formula (22), will be equal to 

d Ln z _ 1^ 

dz z 

We emphasize that the derivative of Ln z is also a single-valued function. 

§2. The Connection Between Functions of a Complex Variable and 

the Problems of Mathematical Physics 

Connection with problems of hydrodynamics. The Cauchy-Riemann 

conditions relate the problems of mathematical physics to the theory 

of functions of a complex variable. Let us illustrate this from the problems 

of hydrodynamics 

Among all possible motions of a fluid an important role is played by 

the steady motions. This name is given to motions of the fluid for which 

there is no change with time in the distribution of velocities in space. 

For example, an observer standing on a bridge and watching the flow 

of the river around a supporting pillar sees a steady flow. Sometimes a 

flow is steady for an observer in motion on some conveyance. In the 

case of a steamship travelling through rough water, the flow will appear 

nonsteady to an observer on the shore but steady to one on the ship. 

To a passenger seated in an airplane that is flying with constant velocity, 

the flow of the air as disturbed by the plane will still appear to be a 

steady one. 

For steady motion the velocity vector V of the particle of the fluid 

passing through a given point of space does not change with time. If 

the motion is steady for a moving observer, then the velocity vector 

does not change with time at points having constant coordinates in a 

coordinate system which moves with the observer. 

Among the motions of a fluid great importance has been attached to 
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the class of plane-parallel motions. These are flows for which the velocity 

of the particles is everywhere parallel to some plane and the distribution 

of the velocities is identical on all planes parallel to the given plane. 

If we imagine an infinitely extended mass of fluid, flowing around a 

cylindrical body in a direction perpendicular to a generator, the distribu¬ 

tion of velocities will be the same on all planes perpendicular to the 

generator, so that the flow will be plane-parallel. In many cases the 

motion of a fluid is approximately plane-parallel. For example, if we 

consider the flow of air in a plane perpendicular to the wing of an air¬ 

plane, the motion of the air may be considered as approximately plane- 

parallel, provided the plane in question is not very close either to the 

fuselage or to the tip of the wing. 

We will show how the theory of functions of a complex variable may 

be applied to the study of steady plane-parallel flow. 

Here we will assume that the liquid is incompressible, i.e., that its 

density does not change with change in pressure. This assumption holds, 

for example, for water, but it can be shown that even air may be considered 

incompressible in the study of its flow, if the velocity of the motion is 

not very large. The hypothesis of incompressibility of air will not produce 

a noticeable distortion if the velocities of motion do not exceed the range 

of 0.6 to 0.8 of the velocity of sound (330 m/sec). 

The flow of a liquid is characterized by the distribution of the velocities 

of its particles. If the flow is plane-parallel, then it is sufficient to determine 

the velocities of the particles in one of the planes parallel to which the 

motion occurs. 

We will denote by V(x, y, t) the vector velocity of the particle passing 

through the point with coordinates x, y at the instant of time t. In the 

case of steady motion, V does not depend on time. The vector V will 

be given by its projections u and v on the coordinate axes. We consider 

the trajectories of particles of the fluid. In the case of steady motion, 

there is no change with time in the velocities of the successive particles 

issuing from a given point in space. If we know the field of the velocities, 

i.e., if we know the components of the velocity as functions of x, y, 

then the trajectories of the particles may be determined by using the 

fact that the velocity of a particle is everywhere tangent to the trajectory. 

This gives 

dy = v(x, y) 

dx u(x, y) 

The equation so obtained is the differential equation for the trajectories. 

The trajectory of a particle in a steady motion is called a streamline. 

Through each point of the plane passes exactly one streamline. 
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An important role is played here by the so-called stream function. 

For a fixed streamline C0 let us consider the imaginary channel bounded 

by the following four walls: One wall is the cylindrical surface (with 

generators perpendicular to the plane of the flow) passing through the 

streamline C0; the second wall is the same cylindrical surface for a 

neighboring streamline C,; the third is the plane of the flow; and the 

fourth is a parallel plane at unit distance (figure 5). If we consider two 

arbitrary cross sections of 

our channel, denoted by y, 

and y2, then the quantity 

of fluid passing through the 

sections y, and y2 in unit 

time will be the same, as 

follows from the fact that 

the quantity of fluid inside 

the part of the channel 

marked off by C,, C0 and 

y, , y2 cannot change, be¬ 

cause of the constant density, 

since the side walls of the Fig. 5 

channel C0and C, are formed 

by streamlines, so that no fluid passes through them Consequently the 

same amount of fluid must leave in unit time through y, as enters 

through y2. 

Now by the stream function we mean the function <p(x, y) that has a 

constant value on the streamline C, equal to the quantity of liquid passing 

in unit time through the cross section of the channel constructed on the 

curves C0 and C, . 

The stream function is defined only up to an arbitrary constant, 

depending on the choice of the initial streamline C0. If we know the 

stream function, then the equations for the streamlines are obviously 

>p(x, y) = const. 

We now wish to express the components of the velocity of the flow at a 

given point M(x, y) in terms of the derivatives of the stream function. 

To this end we consider the channel formed by the streamline C through 

the point M(x, y) and a neighboring streamline C' through a nearby 

point M\x, y + Ay), together with the two planes parallel to the plane 

of flow and a unit distance apart. Let us compute the quantity of the 

liquid q passing through the section MM' of the channel during time dt. 

On the one hand, from the definition of the stream function 

q = W-+)dt. 



156 IX. FUNCTIONS OF A COMPLEX VARIABLE 

On the other hand, q is equal (figure 6) to the volume of the solid 

formed by drawing the vector V dt from each point of the section MM‘. 

If MM' is small, we may assume that V is constant over the whole of 

MM' and is equal to the 

value of V at the point M. 

The area of the base of the 

parallelepiped so constructed 

is Ay x 1 (in figure 6 the 

unit thickness is not shown), 

and the altitude is the 

projection of the vector V dt 

on the Ox axis, i.e., u dt so 

that 

q u Ay dt 

and thus 

u Ay bo Aip. 

Dividing this equation by Ay, and passing to the limit, we get 

dip 
U = Ty‘ 

A similar argument gives for the second component 

(26) 

dx• 
(26') 

To define the field of the velocity vectors, we introduce, in addition to 

the stream function, another function, which arises from considering 

the rotation of small particles of the liquid If we imagine that a particular 

particle of the fluid were to become solidified, it would in general have 

a rotatory motion. However, if the motion of the fluid starts from rest 

and if there is no internal friction between particles, then it can be shown 

that rotation of the particles of the fluid cannot begin. Motions of a 

fluid in which there is no rotation of this sort are called irrotational; 

they play a fundamental role in the study of the motion of bodies in a 

fluid. In the theory of hydromechanics it is shown that for irrotational 

flow there exists a second function <p(x, y) such that the components of 

the velocity are expressed by the formulas 

(27) 

the function <p is called the velocity potential of the flow. Later, we will 

consider motions with velocity potential. 
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Comparison of the formulas for the components of the velocity from 

the stream function and from the velocity potential gives the following 

remarkable result 

The velocity potential <p(x, y) and the stream function ip(x, y) for the 

flow of an incompressible fluid satisfy the Cauchy-Riemann equations 

dip dip 

S = (28) 
ty _ _&P 
dy dx' 

In other words, the function of a complex variable 

w = <KX< y) + i>P(x, y) 

is a differentiable function of a complex variable. Conversely, if we choose 

an arbitrary differentiable function of a complex variable, its real and 

imaginary parts satisfy the Cauchy-Riemann conditions and may be 

considered as the velocity potential and the stream function of the flow 

of an incompressible fluid. The function w is called the characteristic 

function of the flow 

Let us now consider the significance of the derivative of w. Using, 

for example, formula (22), we have 

dw d<p dip 

~dz ~ dx + ' dx' 

From (27) and (26') we find 

dw 
—— = u — tv 
dz 

or, taking complex conjugates, 

"+'■'-(-£-)■ <29> 
where the bar over dw/dz denotes the complex conjugate 

Consequently, the velocity vector of the flow is equal to the conjugate 

of the value of the derivative of the characteristic function of the flow. 

Examples of plane-parallel flow of a fluid. We consider several examples. 

Let 

w = Az, (30) 
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where A is a complex quantity. From (29) it follows that 

u + w — A. 

Thus the linear function (30) defines the flow of a fluid with constant 

vector velocity. If we set 

A = u0 — iv0 , 

then, decomposing into the real and imaginary parts of w, we have 

<KX> y) = UqX + v0y, 

<KX> y) = u0y - Vgx, 

so that the streamlines will be straight lines parallel to the velocity vector 

(figure 7). 

As a second example we consider the function 

w- = Az\ 

where the constant A is real. In order to graph the flow, we first determine 

the streamlines. In this case 

4>(x,y) = 2Axy, 

and the equations of the streamlines are 

xy = const. 

These are hyperbolas with the coordinate axes as asymptotes (figure 8). 

The arrows show the direction of motion of the particles along the stream¬ 

lines for A > 0. The axes Ox and Oy are also streamlines 

If the friction in the liquid is very small, we will not disturb the rest 

of the flow if we replace any streamline by a rigid wall, since the fluid 

iX 

Fio. 7. Fig. 8. 
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will glide along the wall Using this principle to construct walls along 

the positive coordinate axes (in figure 8 they are represented by heavy 

lines), we have a diagram of how the fluid flows irrotationally, in this 

case around a corner. 

An important example of a flow is given by the function 

w = a(z + y), (31) 

where a and R are positive real quantities 

The stream function will be 

R'y \ 

and thus the equation for the streamlines is 

R2y 

x2 + y* 
= const. 

In particular, taking the constant equal to zero, we have either y = 0 or 

x2 4- y2 = R2-, thus, a circle of radius R is a streamline. If we replace 

the interior of this streamline by a solid body, we obtain the flow around 

a circular cylinder A diagram of the streamlines of this flow is shown in 

figure 9. The velocity of the flow may be defined from formula (29) by 

u+iv = a[ 1 --jr)- 

At a great distance from the cylinder we find 

lim (u + iv) = a; 
*-*«© 

i.e., far from the cylinder the velocity tends to a constant value and thus 

the flow tends to be uniform. Consequently, formula (29) defines the 

flow which arises from the passage 

around a circular cylinder of a fluid 

which is in uniform motion at a 

distance from the cylinder. 

The basic ideas of the theory of an air¬ 

plane wing; theorem of Zukovskii. Fig. 9. 

The application of the theory of functions of a complex variable to the 

study of plane-parallel flows of a fluid was the source of several remarkable 
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discoveries in aerodynamics by Zukovskil and Caplygin The study of 

streamlines of bodies led them to discover the law for the formation of 

lifting force on the wing on an airplane. In order to present the ideas 

which led to this discovery, we need to consider one more concrete 

example of fluid flow Let us consider the characteristic function 

where r is a real constant. Although M' is a multiple-valued function, 

its derivative 
dw _ r 1^ 

dz 2ni z 
(32) 

is single valued, so that our function uniquely defines the velocity field 

of some fluid flow. If we set z = reiB, the velocity potential and the 

stream function may be computed from (25) as 

The second of these formulas shows that the streamlines are the circles 

r = const (figure 10). 

The velocity of the flow is defined by formula (29) as 

In particular, it follows that the value of the velocity vector will be 

m 1 
V = | u + to | = 

2tt 

i.e., the velocity is constant on every streamline A more detailed investiga¬ 

tion shows that the flow goes counterclockwise for r > 0 and clockwise 

for r < 0. 

If we replace one of the streamlines by 

a rigid boundary, we obtain the circular 

motion of a fluid around a cylinder. Such 

a motion is called circulatory. 

However, the potential of our motion 

is not a single-valued function. In one 

passage over a closed contour around the 

cylinder the potential is changed by an 

amount T. This change in potential is 

Fig. 10. called the circulation of the flow. 
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If to the characteristic function of a flow past a cylinder (31), we add 

the characteristic function of a circulatory flow (with clockwise circuit), 

we get a new characteristic function 

This characteristic function also represents the flow around a cylinder of 

radius R. In fact, the stream function will be constant on a circumference 

of radius R, since there the coefficients of the imaginary parts of both 

terms are constant. The velocity of the flow, defined by the function (33), 

will again converge to a as z -*■ oo. This shows that the characteristic 

function (33) defines, for any value of T, the streamlines of a translational 

flow past a cylinder Figure II illustrates the character of the flow for 

r > 0. This flow will not be 

symmetric, since the stagna¬ 

tion points a and b where the 

streams meet and leave the 

cylinder are displaced down¬ 

ward. The potential of the flow 

under consideration will be a 

multiple-valued function. As 

the result of one circuit around 

the cylinder it will change by Fig. 11. 

an amount equal to T. 

Because of symmetry, the flow around a cylinder will usually be of the 

form defined by the functions (32), but for nonsymmetric bodies the 

flow which arises usually has a multiple-valued potential Later we will 

discuss the physical significance of this fact The methods of the theory 

of functions of a complex variable allow us to define the possible flows 

around bodies of arbitrary shape These methods will be discussed in the 

following section. With their help we can make use of the flow around 

a cylinder to construct the flow, with single-valued or multiple-valued 

potential, around any body. 

In studying the streamlines of the wing of an airplane, we are dealing 

with a body with a sharp edge at the rear. The profile of the wing of an 

airplane always narrows toward the rear If for such a profile we construct 

a flow with a single-valued potential, then the stagnation point where the 

stream leaves the wing proves not to be at the edge (figure 12a). But it 

(o) Fig 12. (b) 
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turns out that such a flow is physically impossible. (Infinite velocity, 

with consequent infinite rarefaction of the fluid would occur at the sharp 

edge.) The flow for which the point b falls on the edge of the wing 

(figure 12b) is the uniquely possible flow, and this flow, as a rule, will 

have a multiple-valued potential, i.e., will be a circulatory flow. The 

circulation To( such a flow again is defined as the change in the potential 

for a circuit of a closed contour around the wing 

The physical realizability of a flow around the profile of a wing with a 

stream leaving the rear edge is called Caplygin's postulate. 

The remarkable discovery of Zukovskil consists of the fact that the 

existence of circulation in the flow causes a lifting force on the wing, 

in a direction perpendicular to 

the velocity a of the oncoming 

1 P- poT flow and equal in magnitude 

to the quantity 

where p is the density of the 

Fig. 13. medium and T is the circula¬ 
tion (figure 13). 

This theorem of Zukovskil about the lifting force on a wing is basic 

for all contemporary aerodynamics. We will not give the proof here, 

merely noting that the usual proofs are based on the theory of integrals 

of functions of a complex variable. 

The basic results in aerodynamics as established by Zukovskil and 

taplygin have been extensively developed by the work of Soviet scientists. 

Applications to other problems of mathematical physics. The theory 

of functions of a complex variable has found wide application not only 

in wing theory but in many other problems of hydrodynamics. 

However, the domain of application of the theory of functions is not 

restricted to hydrodynamics, it is much wider than that, including many 

other problems of mathematical physics. To illustrate, we return to the 

Cauchy-Riemann conditions 

du _ dv 

dx~dy' 

du __ dv 

dy dx 

and deduce from them an equation which is satisfied by the real part of 

an analytic function of a complex variable. If the first of these equations 
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is differentiated with respect to x, and the second with respect to y, we 

obtain by addition 

*L+ *L_o. 
a** a.v* 

This equation (which we have already met in Chapter VI) is known as the 

Laplace equation. A large number of problems of physics and mechanics 

involve the Laplace equation. For example, if the heat in a body is in 

equilibrium, the temperature satisfies the Laplace equation. The study 

of magnetic or electrostatic fields is connected with this equation. In 

the investigation of the filtration of a liquid through a porous medium, 

we also arrive at the Laplace equation. In all these problems involving 

the solution of the Laplace equation the methods of the theory of functions 

have found wide application. 

Not only the Laplace equation but on the more general equations of 

mathematical physics can be brought into connection with the theory of 

functions of a complex variable. One of the most remarkable examples 

is provided by planar problems in the theory of elasticity. The foundations 

of the application of functions of a complex variable to this domain 

were laid by the Soviet scientists G. B. Kolosov and N. I. MusheliSvili. 

§3. The Connection of Functions of a Complex Variable with 

Geometry 

Geometric properties of differentiable functions. As in the case of 

functions of a real variable, a great role is played in the theory of analytic 

functions of a complex variable by the geometric interpretation of these 

functions. Broadly speaking, the geometric properties of functions of a 

complex variable have not only provided a natural means of visualizing 

the analytic properties of the functions but have also given rise to a 

special set of problems. The range of problems connected with the geometric 

properties of functions has been called the geometric theory of functions. 

As we said earlier, from the geometric point of view a function of a 

complex variable w = f\z) is a transformation from the z-plane to the 

w-plane. This transformation may also be defined by two functions of 

two real variables 

u = u(x, y), 

v = v(x, y). 

If we wish to study the character of the transformation in a very small 

neighborhood of some point, we may expand these functions into 



164 IX. FUNCTIONS OF A COMPLEX VARIABLE 

Taylor series and restrict ourselves to the leading terms of the expansion 

(£)<* - + (I7).0' -*> + ■••• 
du' 

v-v-= (If).-*> + - • 

dy - 

dv 

where the derivatives are taken at the point (x„, y0). Thus, in the neigh¬ 

borhood of a point, any transformation may be considered approximately 

as an affine transformation* 

u Uq — q(x x0) + b(y — y0), 

v - v0 = c(x- x0) + d(y - y„), 

where 

3
 L _ idu\ 0 = 

la.v) ’ 

- ldv\ A_ ldv\ a — 

UvV 

Let us consider the properties of the transformation effected by the 

analytic function near the point z = x 4- iy. Let C be a curve issuing 

from the point z; on the w-plane the corresponding points trace out the 

curve r, issuing from the point w. If z' is a neighboring point and w' 

is the point corresponding to it, then for z'-*zwe will have w' -*■ w and 

4-37 <34> 

In particular, it follows that 

I/'WI• <35> 

This fact may be formulated in the following manner. 

The limit of the ratio of the lengths of corresponding chords in the 

w-plane and in the z-plane at the point z is the same for all curves issuing 

from the given point z, or as it is also expressed, the ratio of linear elements 

on the w-plane and on the z-plane at a given point does not depend on 

the curve issuing from z. 

The quantity |/'(z)|, which characterizes the magnification of linear 

elements at the point z, is called the coefficient of dilation at the point z. 

*Cf. Chapter 111, §11. 
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We now suppose that at some point z the derivative /'(z) ^ 0, so 

that f'(z) has a uniquely determined argument.* Let us compute this 

argument, using (34) 

arg jrz[y = ar8 (w' ~ w) ~ arS (*' - *). 

but arg(w' — w) is the angle /3' between the chord ww' and the real axis, 

and arg(z' — z) is the angle a' between the chord zz and the real axis. 

If we denote by a. and /3 the corresponding angles for the tangents to the 

curves C and T at the points z and w (figure 14), then for z' -*■ z 

P-P, 

so that in the limit we get 

arg f\z) = /?-«. (36) 

This equation shows that arg f\z) is equal to the angle tf> through which 

the direction of the tangent to the curve C at the point z must be turned 

to assume the direction of the tangent to the curve T at the point w. 

From this property arg f'(z) is called the rotation of the transformation 

at the point z. 

From equation (36) the reader can easily derive the following proposi¬ 

tions. 

As we pass from the z-plane to the w-plane, the tangents to all curves 

issuing from a given point are rotated through the same angle. 

If C, and C2 are two curves issuing from the point z, and Z1, and r2 

are the corresponding curves from the point w, then the angle between 

r, and r, at the point w is equal to the angle between C, and C2 at 

the point z. 

* Cf. Chapter IV, §3. 
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In this manner, for the transformation effected by an analytic function, 

at each point where f'(z) ^ 0, all linear elements are changed by the 

same ratio, and the angles between corresponding directions are not 

changed. 

Transformations with these properties are called conformal transforma¬ 

tions. 

From the geometric properties just proved for transformations near a 

point at which f'(z0) 0, it is natural to expect that in a small neighbor¬ 

hood of z0 the transformation will be one-to-one; i.e., not only will 

each point z correspond to only one point w, but also conversely each 

point w will correspond to only one point z. This proposition can be 

rigorously proved. 

To show more clearly how conformal transformations are distinguished 

from various other types of transformations, it is useful to consider an 

arbitrary transformation in a small neighborhood of a point. If we 

consider the leading terms of the Taylor expansions of the functions u 

and v effecting the transformation, we get 

u ~ “• = (-£)„(x - *•> + (*§r),{y ~ +• 

* - *=(■£■).(* -+ (£).(' -*>+•••• 

If in a small neighborhood of the point (x„ , >>0) we ignore the terms of 

higher order, then our transformation will act like an affine transforma¬ 

tion. This transformation has an inverse if its determinant does not vanish 

If A = 0, then to describe the behavior of the transformation near the 

point (x0, y0) we must consider terms of higher order.* 

In case u +• iv is an analytic function, we can express the derivatives 

with respect to y in terms of the derivatives with respect to x by using 

the Cauchy-Riemann conditions, from which we get 

A = 
= l/W. 

* In this last case, i.e., for A = 0, the transformation is not called affine. For affine 
transformations see also Chapter III, §11. 
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i.e., the transformation has an inverse when /'(z0) 96 0. If we set 

/'(z„) = r(cos <j> + i sin </>), then 

(f■).—(£).—** 
and the transformation near the point (*0, y0) will have the form 

u -u0 = /•[(* - x0) cos <f> -(y - y0) sin </.] + 

v —v„ = r[(x - x0) sin <f> + (y — y0) cos <f>} + 

These formulas show that in the case of an analytic function w = u + iv, 

the transformation near the point (*„,>'„) consists of rotation through 

the angle <f> and dilation with coefficient r. In fact, the expressions inside 

the brackets are the well-known formulas from analytic geometry for 

rotation in the plane through an angle >f>, and multiplication by r gives 

the dilation. 

To form an idea of the possibilities when f\z) = 0 it is useful to consider 

the function 

w = z". (37) 

The derivative of this function w' = nzn~l vanishes for z = 0. The 

transformation (37) is most conveniently considered by using polar 

coordinates or the trigonometric form of a complex number. Let 

z = r(cos <f> + i sin <f>), 

w = p{cos 0 + i sin 0). 

Using the fact that in multiplying complex numbers the moduli are 

multiplied and the arguments added, we get 

z" = rn(cos n<f> 4- i sin n<f>), 

and thus 

P = r\ 

0 = n<f>. 

From the last formula we see that the ray <f> = const of the z-plane 

transforms into the ray 0 = n<j> = const in the w-plane. Thus an angle <* 

between two rays in the z-plane will transform into an angle of magnitude 

j8 = net. The transformation of the z-plane into the w-plane ceases to 

be one-to-one. In fact, a given point w with modulus p and argument 0 
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may be obtained as the image of each of the n points with moduli r = ■$/p 
and arguments 

8 8 2n 8 2it . 

n n 

When raised to the power n, the moduli of the corresponding points 
will all be equal to p and their arguments will be equal to 

8,8 + 2tt, ■■■, 8 + 2n(n- 1), 

and since changing the value of the argument by a multiple of 2n does 
not change the geometric position of the point, all the images on the 
w-plane are identical. 

Conformal transformations. If an analytic function w = f[z) takes a 
domain D of the z-plane into a domain A of the w-plane in a one-to-one 
manner, then we say that it effects a conformal transformation of the 
domain D into the domain A. 

The great role of conformal transformations in the theory of functions 
and its applications is due to the following almost trivial theorem. 

If $ = F(w) is an analytic function on the domain A, then the composite 
function F[/(z)] is an analytic function on the domain D. This theorem 
results from the equation 

At = A£ Aw 

Az Aw Az 

In view of the fact that the functions £ = F(w) and w = /(z) are 
analytic, we conclude that both factors on the right side have a limit, 
and thus at each point of the domain D the quotient At/Az has a unique 
limit dt/dz. This shows that the function £ = F\f(z)\ is analytic. 

The theorem just proved shows that the study of analytic functions 
on the domain A may be reduced to the study of analytic functions on 

the domain D. If the geo¬ 
metric structure of the do¬ 
main D is simpler, this fact 
simplifies the study of the 
functions. 

The most important class 
of domains in which it is 
necessary to study analytic 
functions is the class of 
simply connected domains. 
This is the name given to do¬ 
mains whose boundary con¬ 
sists of one piece (figure 15a) 
as opposed to domains whose 
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boundary falls into several pieces (for example, the domains illustrated 

in figures 15b and 15c). 

We note that sometimes we are interested in investigating functions 

on a domain lying outside a curve rather than inside it. If the boun¬ 

dary of such a domain consists of only one piece, then the domain is also 

called simply connected (figure 15d). 

At the foundations of the theory of conformal transformations lies the 

following remarkable theorem of Riemann. 

For an arbitrary simply connected domain A, it is possible to construct 

an analytic function which effects a conformal transformation of the 

circle with unit radius and center at the origin into the given domain in 

such a way that the center of the circle is transformed into a given point h>0 
of the domain A, and a curve in an arbitrary direction at the center of 

the circle transforms into a curve with an arbitrary direction at the point w,,. 

This theorem shows that the study of functions of a complex variable 

on arbitrary simply connected domains may be reduced to the study of 

functions defined, for example, on the unit circle. 

We will now explain in general outline how these facts may be applied 

to problems in the theory of the wing of an airplane. Let us suppose that 

we wish to study the flow around a curved profile of arbitrary shape. 

If we can construct a conformal transformation of the domain outside 

the profile to the domain outside the unit circle, then we can make use 

of the characteristic function for the flow around the circle to construct 

the characteristic function for the flow around the profile. 

Let £ be the plane of the circle, z the plane of the profile, and £ = /(z) 

a function effecting the transformation of the domain outside the profile 

to the domain outside the circle, where 

lim £ = oo. 

We denote by a the point of the 

circle corresponding to the edge of 

the profile A and construct the cir¬ 

culatory flow past the circle with one 

of the streamlines leaving the circle 

at a (figure 16). This function will be 

denoted by W(£): 

1F(£) = (p + ,«P. 

Fig. 16. 
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The streamlines of this flow are defined by the equation 

'F = const. 

We now consider the function 

H<Z) = W[ f(z)\, 

and set 

w = <f> + i<l>- 

We show that w(z) is the characteristic function of the flow past the 

profile with a streamline leaving the profile at the point A. First of all 

the flow defined by the function w(z) is actually a flow past the profile. 

To prove this, we must show that the contour of the profile is a stream¬ 

line curve, i.e., that on the contour of the profile 

•Kx, y) = const. 

But this follows from the fact that 

•K*,y) = m,v), 

and the points (x, y) lying on the profile correspond to the points (f, rj) 
lying on the circle, where V'lf, 77) = const. 

It is also simple to show that A is a stagnation point for the flow, 

and it may be proved that by suitable choice of velocity for the flow 

past the circle, we may obtain a flow past the profile with any desired 

velocity. 

The important role played by conformal transformations in the theory 

of functions and their applications gave rise to many problems of finding 

the conformal transformation of one domain into another of a given 

geometric form. In a series of simple but useful cases this problem may 

be solved by means of elementary functions. But in the general case 

the elementary functions are not enough. As we saw earlier, the general 

theorem in the theory of conformal transformations was stated by Riemann, 

although he did not give a rigorous proof. In fact, a complete proof 

required the efforts of many great mathematicians over a period of 

several decades. 

In close connection with the different approaches to the proof of 

Riemann’s theorem came approximation methods for the general construc¬ 

tion of conformal transformations of domains. The actual construction 
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of the conformal transformation of one domain onto another is sometimes 

a very difficult problem. For investigation of many 

of the general properties of functions, it is often 

not necessary to know the actual transformation of 

one domain onto another, but it is sufficient to 

exploit some of its geometric properties. This fact 

has led to a wide study of the geometric properties 

of conformal transformations. To illustrate the 

nature of theorems of this sort we will formulate Fig. 17. 

one of them. 

Let the circle of unit radius on the z-plane with center at the origin 

be transformed into some domain (figure 17). If we consider a completely 

arbitrary transformation of the circle into the domain A, we cannot 

make any statements about its behavior at the point z = 0. But 

for conformal transformations we have the following remarkable 

theorem. 

The dilation at the origin does not exceed four times the radius of the 

circle with center at w,,, inscribed in the domain 

l/'(0) I ^ 4r. 

Various questions in the theory of conformal transformations were 

considered in a large number of studies by Soviet mathematicians. In 

these works exact formulas were derived for many interesting classes of 

conformal transformations, methods for approximate calculation of 

conformal transformations were developed, and many general geometric 

theorems on conformal transformations were established. 

Quasi-conformal transformations. Conformal transformations are closely 

connected with the investigation of analytic functions, i.e., with the study 

of a pair of functions satisfying the Cauchy-Riemann conditions 

du _ dv 
dx~ dy' 

du _ dv 
dy dx ’ 

But many problems in mathematical physics involve more general systems 

of differential equations, which may also be connected with transforma¬ 

tions from one plane to another, and these transformations will have 

specific geometric properties in the neighborhood of points in the Oxy 
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plane. To illustrate, we consider the following example of differential 

equations 

du 
dx 

, .dv 
= Pi*>y)Yy' 

dv 
Yx 

, . du 
(38) 

If p(x, y) = 1, this is the system of Cauchy-Riemann equations. In 

the general case of an arbitrary function p(x,y), we can also consider 

every solution of the system (38) as a transformation of the Oxy plane 

to the Ouv plane. Let us examine the geometric properties of this trans¬ 

formation in the neighborhood of a point (x0 , _y0). Taking a small neigh¬ 

borhood of (x0, >>„), we retain only the first terms in the expansion of 

the functions u and v in powers of x — x0 and y — y0, and thereby 

consider the following affine transformation 

“ - “•= (If). {x ~ *o) + (|f)0 " •Vo)> (39) 

v-v*=(£Vx-x*)+(wVy-ya)- 

If the functions u and v satisfy the system of equations (38), then for 

this affine transformation we have the following property. 

Ellipses with center at the point (jco.^o) with principal axes parallel to 

the coordinate axes, and with ratio of semiaxes 

b 
a P(xo. To) 

are transformed in the Ouv plane to circles with center at the point 

(“o. v„). 
Let us prove this proposition. The equation of the circle with center 

(“o > Vo) *n ^e Ouv plane will be 

(u - u0)2 4- (v - t>0)2 = p\ 

Replacing u — u0 and v — v„ by their expressions in terms of x and y, 
we get the equation for the corresponding curve in the Oxy plane: 

+[(£>: 
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Using the equations in (38) to express the derivatives of v in terms 

of the derivatives of u, we get 

(y-y0f = P*. 

If we set 

a 

b 

this equation takes the form 

(£ - to)2 | (y - y*)2 _ . 
^ b1 

Thus the curve that is transformed into a circle is in fact an ellipse with 

the indicated properties. 

If we do not consider the affine transformation given by the first terms 

of the expansion but rather the exact transformation itself, then the above 

property of the transformation will hold more and more exactly for 

smaller and smaller ellipses, so that we may say that the property holds 

for infinitely small ellipses. 

In this manner, from equations (38) it follows that at every point the 

infinitesimal ellipse that is transformed into a circle has its semiaxes 

completely determined by the transformation, both with respect to their 

direction and to the ratio of their lengths. It can be shown that this 

geometric property completely characterizes the system of differential 

equations (38); i.e., if the functions u and v effect a transformation with 

the given geometric property, then they satisfy this system of equations. 

In this way, the problem of investigating the solutions of equations (38) 

is equivalent to investigating transformations with the given properties. 

We note, in particular, that for the Cauchy-Riemann equations this 

property is formulated in the following manner. 

An infinitesimal circle with center at the point (jc0 , y0) is transformed 

into an infinitesimal circle with center at the point (u0, t»0). 

A very wide class of equations of mathematical physics may be reduced 

to the study of transformations with the following geometric properties. 

For each point (x, y) of the argument plane, we are given the direction 
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of the semiaxes of two ellipses and also the ratio of the lengths of these 

semiaxes. We wish to construct a transformation of the Oxy plane to 

the Ouv plane such that an infinitesimal ellipse of the first family transforms 

into an infinitesimal ellipse of the second with center at the point (u, v). 
Transformations connected with such general systems of equations 

were introduced by the Soviet mathematician M. A. Lavrent’ev and have 

received the name quasi-conformal. The idea of studying transformations 

defined by systems of differential equations made it possible to extend 

the methods of the theory of analytic functions to a very wide class of 

problems. Lavrent’ev and his students developed the study of quasi- 

conformal transformations and found a large number of applications 

to various problems of mathematical physics, mechanics, and geometry. 

It is interesting to note that the study of quasi-conformal transformations 

has proved very fruitful in the theory of analytic functions itself. Of 

course, we cannot dwell here on all the various applications of the geo¬ 

metric method in the theory of functions of a complex variable. 

§4. The Line Integral; Cauchy’s Formula and Its Corollaries 

Integrals of functions of a complex variable. In the study of the 

properties of analytic functions the concept of a complex variable plays 

a very important role. Corresponding to the 

definite integral of a function of a real variable, 

we here deal with the integral of a function of 

a complex variable along a curve. We consider 

in the plane a curve C beginning at the point z0 
and ending at the point z, and a function f(z) 

defined on a domain containing the curve C. 

We divide the curve C into small segments 

(figure 18) at the points 
Fig. 18. 

z0 > zl • 2n — * 

and consider the sum 

n 

s = £/(**) (**-**-.)• 
Jr=l 

If the function f(z) is continuous and the curve C has finite length, 

we can prove, just as for real functions, that as the number of points 

of division is increased and the distance between neighboring points 

decreases to zero, the sum 5 approaches a completely determined limit. 
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This limit is called the integral along the curve C and is denoted by 

f fi*)dz. 
J c 

We note that in this definition of the integral we have distinguished 

between the beginning and the end of the curve C; in other words, we 

have chosen a specific direction of motion on the curve C. 

It is easy to prove a number of simple properties of the integral. 

1. The integral of the sum of two functions is equal to the sum of the 

integrals of the individual functions: 

f l/(z) + &)) dz = J Rz) dz + f g(z) dz. 
J c J c J c 

2. A constant multiple may be taken outside the integral sign: 

f df(z) dz = A j f(z) dz. 
c c 

3. If the curve C is the sum of the curves C, and C* , then 

f f(z) dz= f f(z) dz + J Rz) dz. 
d c •'Cl J C • 

4. If C is the curve C with opposite orientation, then 

/ f(z) dz = — j f(z) dz. 
J C J c 

All these properties are obvious for the approximating sums and carry 

over to the integral in passing to the limit. 

5. If the length of the curve C is equal to L and if everywhere on C 

the inequality 

l/(z) I < M 

is satisfied, then 

ml. 

Let us prove this property. It is sufficient to prove the inequality for 

the sum S, since then it will carry over in the limit for the integral also. 
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For the sum 

I s I = | - **-.)| < X !/(**)! I - **-1 \<M^\zk- zfc_, I. 

But the sum in the second factor is equal to the sum of the lengths of 

the segments of the broken line inscribed in the curve C with vertices 

at the points zk. The length of the broken line, as is well known, is not 

greater than the length of the curve, so that 

| 51 ^ ML. 

We consider the integral of the simplest function f(z) — 1. Obviously 

in this case 

S = (z, - z0) + (z2 - z,) + - + (z„ - zn_,) = zn- z0 = z - z„. 

This proves that 

1 ■ dz = z — z0 . 
c 

This result shows that for the function /(z) = 1 the value of the integral 

for all curves joining the points z0 and z is the same. In other words, 

the value of the integral depends only on the beginning and end points 

of the path of integration. But it is easy to show that this property does 

not hold for arbitrary functions of a complex variable. For example, 

if /(z) = x, then a simple computation shows that 

t x* 
xdz = —, z = x + iy, 

Jc, * 

of integration shown in figure 19. 

We leave it to the reader to verify 

these equations. 

A remarkable fact in the theory of 

analytic functions is the following 

theorem of Cauchy. 

If /(z) is differentiable at every point 

of a simply connected domain D, then 

the integrals over all paths joining two 

arbitrary points of the domain z0 and z 

are the same. 

We will not give a proof of Cauchy’s 

theorem here, but refer the interested reader to any course in the theory 

xdz = + iyx, 

where C, and C2 are the paths 
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of functions of a complex variable. Let us mention here some important 

consequences of this theorem. 

First of all, Cauchy’s theorem allows us to introduce the indefinite 

integral of an analytic function. For let us fix the point z0 and consider 

the integral along curves connecting z0 and z: 

F(z)=f AO dl. 

Here we may take the integral over any curve joining z0 and z, since 

changing the curve does not change the value of the integral, which thus 

depends only on z. The function F(z) is called an indefinite integral of/(z). 

An indefinite integral of /(z) has a derivative equal to f(z). 
In many applications it is convenient to have a slightly different for¬ 

mulation of Cauchy’s theorem, as follows. 

If /(z) is everywhere differentiable in a simply connected domain, then 

the integral over any closed contour lying in this domain is equal to zero: 

f /(z) dz —- 0. 
J r 

This is obvious since a closed contour has the same beginning and end, 

so that z0 and z may be joined by a null path. 

By a closed contour we will understand a contour traversed in the 

counterclockwise direction. If the contour is traversed in the clockwise 

direction we will denote it by P. 

The Cauchy integral. On the basis of the last theorem we can prove 

the following fundamental formula of Cauchy that expresses the value 

of a differentiable function at interior points of a closed contour in 

terms of the values of the function on the contour itself 

AQdt 
t-z ' 

We give a proof of this formula. Let z be fixed and £ be an independent 

variable. The function 

<H0 = 
AO 
t-z 

will be continuous and differentiable at every point £ inside the domain D, 
with the exception of the point £ = z, where the denominator vanishes, 
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a circumstance that prevents the application of Cauchy’s theorem to the 

function ■on the contour C. 

We consider a circle K„ with center at the point z and radius p and 

show that 

| 4(Qdl = l mdl (40) 
C Kp 

To this end we construct the auxiliary closed contour r„, consisting of 

the contour C, the path yp connecting 

C with the circle, and the circle Kp , 

taken with the opposite orientation 

(figure 20). The contour Tp is 

indicated by arrows. Since the point 

£ = z is excluded, the function </>(£) 
is differentiable everywhere inside rp 
and thus 

I tfM-0. (41) 
JrP 

But the contour rp is divided into four parts: C, yp , R.p and yp , so that 

from property 3 in the last subsection, we have 

f <Kt)di=i f <M)dt + mdi + f. m<K = 0. 
Jrp JC Jyp JKp Jyp 

Replacing the integrals along R.p and yp by integrals along Kp and yp, 

and using property 4, we get 

j = / mdt-1 <f>(odc = o, 
rp c k p 

which proves formula (40). 

To compute the right side of (40), we set 

mdi= f 
Kp J Kp 

ML 
i-z 

m-Az) 
Kp l ~ 2 

Az)dt 
i~z 

f MizM) 
Kp t-z 

di+f(z)j dj 
t-z' 

(42) 
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We compute the second term first. On the circle K„, 

£ = z + p(cos 0 + i sin 0). 

Using the fact that z and p are constant, we get 

= p(—sin 0 + i cos 0) dO = ip(cos 0 + / sin 0) d0, 

and thus 

so that 

£ — z = p(cos 0 + » sin 0), 

since for a circuit of the circumference the total change in 0 is equal to 

2n. From (40) and (42) we have 

f M)dl 

Jc l-z 
2nif(z)+j M) -/(-)tf£. 

J Kf 4—2 

In this equation let us take limits as p -► 0. The left side and the first 

term of the right side will remain unchanged. We will show that the limit 

of the second term is equal to zero. Then for p -*■ 0 our equation gives 

us Cauchy’s formula. In order to prove that the second term tends to 

zero as p -*■ 0 we note that 

lim /(0 ~/(2) 

l-z 
=/'(0, 

i.e., the expression under the integral sign has a finite limit, and thus is 

bounded 
f(0 ~/(2) 

£-2 
< M. 

Applying property 5 of the integral, we have 

i/,5^ Sj M2np 0. 

This completes the proof of Cauchy’s formula. Cauchy’s formula is one 

of the basic tools of investigation in the theory of functions of a complex 

variable. 
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Expansion of differentiable functions in a power series. We apply 

Cauchy’s theorem to establish two basic properties of differentiable 

functions of a complex variable. 

Every function of a complex variable that has a first derivative in a 

domain D has derivatives of all orders. 

In fact, inside a closed contour our function may be expressed by the 

Cauchy integral formula 

The function of z under the sign of integration is a differentiable function; 

thus, differentiating under the integral sign, we get 

AO 
a-zy 

dl 

Under the integral sign there is again a differentiable function; thus we 

can again differentiate, obtaining 

/'(*) = 
1 2 r AOdC 

2ni — *?' 

Continuing the differentiation, we get the general formula 

AQdj 
a - z)"+‘ ■ 

In this manner we may compute the derivative of any order. To make 

this proof completely rigorous, we need also to show that the differentia¬ 

tion under the integral sign is valid. We will not give this part of the proof. 

The second property is the following: 

Iff(z) is everywhere differentiable on a circle K with center at the point a, 

then f(z) can be expanded in a Taylor series 

fiz) =/(fl) + - a) + - ~ fl)n+1 + - , 

which converges inside K. 

In §1 we defined analytic functions of a complex variable as functions 

that can be expanded in power series. This last theorem says that every 

differentiable function of a complex variable is an analytic function. 

This is a special property of functions of a complex variable that has 

no analogue in the real domain. A function of a real variable that has 

a first derivative may fail to have a second derivative at every point. 



§4. CAUCHY'S FORMULA AND ITS COROLLARIES 181 

We prove the theorem formulated in the previous paragraphs. 

Let /(z) have a derivative inside and on the boundary of the circle K 

with center at the point a. Then inside K the function/(z) can be expressed 

by the Cauchy integral 

We write 

i f mx 

£-* = (£-«)-(*- 

(43) 

then 

1 = 1 1 1 

£ - z (£ - a) - (z - a) £ - a _ z - a ' 

£ —a 

(44) 

Using the fact that the point z lies inside the circle, and £ is on the cir¬ 

cumference we get 

so that from the basic formula for a geometric progression 

1 

1 - 
z — a 

£ - a 

(45) 

and the series on the right converges. Using (44) and (45), we can represent 

formula (43) in the form 

+ (z — a)" /(£) 
(£ - a)"+1 

+ •••]</£. 

We now apply term-by-term integration to the series inside the brackets. 

(The validity of this operation can be established rigorously.) Removing 

the factor (z — a)", which does not depend on £, from the integral sign 

in each term, we get 

/(£M£ 
£ - a 

, g-a f AQdt 

2ni Jc(£ -«)* 

, (z - a)" r /(£) </£ 
2ni Jc(£-a)"+I 
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Now using the integral formulas for the sequence of derivatives, we 

may write 

J_ r M)dj /tnl(a) 
2ni Jc (£ — a)n+t nl 

so that we get 

f(z) =/(fl) + £&L(z-a) + + I^(z - a)" + - . 
i! n\ 

We have shown that differentiable functions of a complex variable 

can be expanded in power series. Conversely, functions represented by 

power series are differentiable. Their derivatives may be found by term- 

by-term differentiation of the series. (The validity of this operation can 

be established rigorously.) 

Entire functions. A power series gives an analytic representation of 

a function only in some circle. This circle has a radius equal to the distance 

to the nearest point at which the function ceases to be analytic, i.e., to 

the nearest singular point of the function. 

Among analytic functions it is natural to single out the class of functions 

that are analytic for all finite values of their argument. Such functions 

are represented by power series, converging for all values of the argument z, 

and are called entire functions of z. If we consider expansions about the 

origin, then an entire function will be expressed by a series of the form 

G(z) = c0 + cxz + c2r* + ••• + cnzn + 

If in this series all the coefficients, from a certain one on, are equal to 

zero, the function is simply a polynomial, or an entire rational function 

P(z) = c0 + c,z -1-+ c„zn. 

If in the expansion there are infinitely many terms that are different from 

zero, then the entire function is called transcendental. 

Examples of such functions are: 

e’ = 1 + Jr + ■%- + * 

z z3 zh 

Sm z — 1! 3! + 5! ’ 

i za , z* cosz= 1 
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In the study of properties of polynomials, an important role is played 

by the distribution of the roots of the equation 

P(z) = 0, 

or, more generally speaking, we may raise the question of the distribution 

of the points for which the polynomial has a given value A 

P(z) = A. 

The fundamental theorem of algebra says that every polynomial takes 

a given value A in at least one point. This property cannot be extended 

to an arbitrary entire function. For example, the function w = ez does 

not take the value zero at any point of the z-plane. However, we do have 

the following theorem of Picard: Every entire function assumes every 

arbitrarily preassigned value an infinite number of times, with the possible 

exception of one value. 

The distribution of the points of the plane at which an entire function 

takes on a given value A is one of the central questions in the theory 

of entire functions. 

The number of roots of a polynomial is equal to its degree. The degree 

of a polynomial is closely related to the rapidity of growth of | P(z)| as 

| r | -*■ oo. In fact, we can write 

I P{z)\ = I z I" • | aB + + ■” + -pr |» 

and since for | z | -*■ oo, the second factor tends to | an |, a polynomial 

of degree n, for large values of | z |, grows like | a„ | • | z |n. So it is clear 

that for larger values of n, the growth of | Pn(z)\ for | z \ -*■ oo will be 

faster and also the polynomial will have more roots. It turns out that 

this principle is also valid for entire functions. However, for an entire 

function /(z), generally speaking, there are infinitely many roots, and 

thus the question of the number of roots has no meaning. Nevertheless, 

we can consider the number of roots n(r, a) of the equation 

/(z) = a 

in a circle of radius r, and investigate how this number changes with 

increasing r. The rale of growth of n(r, a) proves to be connected with 

the rate of growth of the maximum M(r) of the modulus of the entire 

function on the circle of radius r. As stated earlier, for an entire function 

there may exist one exceptional value of a for which the equation may 

not have even one root. For all other values of a, the rate of growth 
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of the number n(r, a) is comparable to the rate of growth of the quantity 

In M(r). We cannot give more exact formulations here for these laws. 

The properties of the distribution of the roots of entire functions are 

connected with problems in the theory of numbers and have enabled 

mathematicians to establish many important properties of the Riemann 

zeta functions,* on the basis of which it is possible to prove many theorems 

about prime numbers. 

Fractional or meromorphic functions. The class of entire functions 

may be considered as an extension of the class of algebraic polynomials. 

From the polynomials we may derive the wider class of rational functions 

m = m 
m’ 

which are the quotients of two polynomials. 

Similarly it is natural to form a new class of functions by means of 

entire functions. A function f(z) which is the quotient of two entire 

functions G,(z) and G^z) 

At) 
G\(z) 
Gfr) 

is called a fractional or meromorphic function. The class of functions 

arising in this way plays a large role in mathematical analysis. Among the 

elementary functions contained in the class of meromorphic functions 

are, for example: 

tan z = 
sin z 

cos z ’ 
cot z = 

cos z 

sin z 

A meromorphic function will not be analytic on the whole complex 

plane. At those points where the denominator Gt(z) vanishes, the function 

J\z) becomes infinite. The roots of C2(z) form a set of isolated points 

in the plane. In neighborhoods of these points, the function/(z) naturally 

cannot be expanded in a Taylor series; in a neighborhood of such a 

point a, however, a meromorphic function may be represented by a 

power series that also contains a certain number of negative powers 

of (z — a): 

AZ) = + T^~a + Co + Cl(Z~a) + + Cn{Z~a)” + 
(46) 

Cf. Chapter X on the theory of numbers. 
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As z approaches the point a, the value of f(z) tends to infinity. An 

isolated singular point at which an analytic function goes to infinity is 

called a pole. The loss of analyticity of the function at the point a comes 

from the terms with negative powers of z — a in the expansion (46). 

The expression 

-C^1 - + ■•■+ -g-L 
(z — a)m (z — a) 

characterizes the behavior of a meromorphic function near a singular 

point and is called the principal pari of the expansion (46). The behavior 

of a meromorphic function is determined by its principal part in a neigh¬ 

borhood of a pole. In many cases, if we know the principal part of the 

expansion of a meromorphic function in the neighborhood of all its 

poles, we may construct the function. Thus, for example, if f(z) is rational 

and vanishes at infinity, then it is equal to the sum of the principal parts 

of its expansions about all of its poles, the number of which, for a rational 

function, is finite: 

In the general case a rational function may be represented as the sum 

of all of its principal parts and a polynomial 

Clfc> r<*> 

/0) = X 7 ~m\, + ■• + —1 + Co + C,z + - + Cmzm. 
1 (z - o*)m* z — ait i 

(47) 

Formula (47) gives an expression for a rational function in which the 

role played by its singular points is clear. Expression (47) for a rational 

function is very convenient for various applications of rational functions 

and also has great theoretical interest as showing how the singular points 

of the function define its structure everywhere. It turns out that, just as 

in the case of a rational function, every meromorphic function may be 

constructed from the principal parts of its poles. We introduce without 

proof the appropriate expression, for example, for the function cot z. 

The poles of the function cot z are obtained as the roots of the equation 

sin z = 0 

and are situated at the points: •••, — kn, •••, —n,0,n, •••, kn, It may 

be shown that the principal part of the expansion of the function cot z 

in a power series at the pole z = kn will be 

1 

z — kn ’ 
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and the function cotz is equal to the sum of the principal parts with 

respect to all poles 

cot z = ~ + T (-;-1-—). (48) 
z \ z — kn z + kir / 

The expansion of a meromorphic function in a series of the principal 

parts is noteworthy in that it clearly shows the position of all the singular 

points and also allows us to compute the function on the whole of its 

domain of definition. 

The theory of meromorphic functions has become fundamental for 

the study of many classes of functions that are of great importance in 

analysis. In particular, we must emphasize its significance for the equations 

of mathematical physics. The creation of the theory of integral equations, 

providing answers to many important questions in the theory of the 

equations of mathematical physics, was based to a great extent on the 

fundamental theorems for meromorphic functions. 

Since that time the development of that part of functional analysis 

which is most closely connected with mathematical physics, namely the 

theory of operators, has very often depended on facts from the theory 

of analytic functions. 

On analytic representation of functions. We saw previously that in a 

neighborhood of every point where a function is differentiable it may be 

defined by a power series. For an entire function the power series converges 

on the whole plane and gives an analytic expression for the function 

wherever it is defined. In case the function is not entire, the Taylor series, 

as we know, converges only in a circle whose circumference passes through 

the nearest singular point of the function. Consequently the power 

series does not allow us to compute the function everywhere, and so it 

may happen that an analytic function cannot be given by a power series 

on its whole domain of definition. For a meromorphic function an analytic 

expression giving the function on its whole domain of definition is the 

expansion in principal parts. 

If a function is not entire but is defined in some circle or if we have 

a function defined in some domain but we want to study it only in a 

circle, then the Taylor series may serve to represent it. But when we 

study the function in domains that are different from circles, there arises 

the question of finding an analytic expression for the function suitable 

for representing it on the whole domain. A power series giving an expres¬ 

sion for an analytic function in a circle has as its terms the simplest 

polynomials anzn. It is natural to ask whether we can expand an analytic 
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function in an arbitrary domain in a more general series of polynomials. 

Then every term of the series can again be computed by arithmetic 

operations, and we obtain a method for representing functions that is 

once more based on the simplest operations of arithmetic. The general 

answer to this question is given by the following theorem. 

An analytic function, given on an arbitrary domain, the boundary of 

which consists of one curve, may be expanded in a series of polynomials 

f(z) = P0(z) + Pt(z) + - + P„(z) + 

The theorem formulated gives only a general answer to the question 

of expanding a function in a series of polynomials in an arbitrary domain 

but does not yet allow us to construct the series for a given function, 

as was done earlier in the case of the Taylor series. This theorem raises 

rather then solves the question of expanding functions in a series of 

polynomials. Questions of the construction of the series of polynomials, 

given the function or some of its properties, questions of the construction 

of more rapidly converging series or of series closely related to the behavior 

of the function itself, questions of the structure of a function defined 

by a given series of polynomials, all these questions represent an extensive 

development of the theory of approximation of functions by series of 

polynomials. In the creation of this theory a large role has been played 

by Soviet mathematicians, who have derived a series of fundamental 

results. 

§5. Uniqueness Properties and Analytic Continuation 

Uniqueness properties of analytic functions. One of the most remarkable 

properties of analytic functions is their uniqueness, as expressed in the 

following theorem. 

If in the domain D two analytic functions are given that agree on some 

curve C lying inside the domain, then they agree on the entire domain. 

The proof of this theorem is very simple. Let /,(z) and /s(z) be the two 

functions analytic in the domain D and agreeing on the curve C. The 

difference 

<f>(z) =/,(z) -/2(z) 

will be an analytic function on the domain D and will vanish on the curve C. 

We now show that <f>(z) = 0 at every point of the domain D. In fact, 

if in the domain D there exists a point z0 (figure 21) at which $z0) ^ 0, 

we extend the curve C to the point z0 and proceed along the extended 

curve toward z0 as long as the function remains equal to zero on T. 

Let £ be the last point of T that is accessible in this way. If f(z0) 0, 
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then £ z0, and on a segment of the curve T beyond £ the function <£(z), 

by the definition of the point £, will not be equal to zero. We show that 

this is impossible. In fact, on the part Tc of the curve r up to the point £, 

we have <f>(z) = 0. We may compute all derivatives of the function <f>(z) 

on rc using only the values of <f>(z) on T(, so that on 7\ all derivatives 

of <f>(z) are equal to zero. In particular, at the point £ 

m = = - = o. 

Let us expand the function <£(£) in a Taylor series at the point £. All 

the coefficients of the expansion vanish, so that we get 

4>(z) = o 

Fig. 21. 

in some circle with center at the point £, lying in the domain D. In 

particular, it follows that the equation <f>(z) = 0 

must be satisfied on some segment of the curve T 

lying beyond £. The assumption <f>(z„) 0 gives 

us a contradiction. 

This theorem shows that if we know the 

values of an analytic function on some segment 

of a curve or on some part of a domain, then 

the values of the function are uniquely deter¬ 

mined everywhere in the given domain. Consequently, the values of an 

analytic function in various parts of the argument plane are closely 

connected with one another. 

To realize the significance of this uniqueness property of an analytic 

function, it is only necessary to recall that the general definition of a 

function of a complex variable allows any law of correspondence between 

values of the argument and values of the function. With such a definition 

there can, of course, be no question of determining the values of a function 

at any point by its values in another part of the plane. We see that the 

single requirement of differentiability of a function of a complex variable 

is so strong that it determines the connection between values of the 

function at different places. 

We also emphasize that in the theory of functions of a real variable 

the differentiability of a function does not in itself lead to any similar 

consequences. In fact, we may construct examples of functions that are 

infinitely often differentiable and agree on some part of the Ox axis 

but differ elsewhere. For example, a function equal to zero for all negative 

values of x may be defined in such a manner that for positive x is differs 

from zero and has continuous derivatives of every order. For this it is 

sufficient, for example, to set, for x > 0 

fix) = 



§5. PROPERTIES AND ANALYTIC CONTINUATION 189 

Analytic continuation and complete analytic functions. The domain of 

definition of a given function of a complex variable is often restricted 

by the very manner of defining the function. Consider a very elementary 

example. Let the function be given by the series 

/(z) = 1 + z + z! + - + z" + -. (49) 

This series, as is well known, converges in the unit circle and diverges 

outside this circle. Thus the analytic function given by formula (49) is 

defined only in this circle. On the other hand, we know that the sum of 

the series (49) in the circle | z | < 1 is expressed by the formula 

= <»> 

Formula (50) has meaning for all values of z ^ 1. From the uniqueness 

theorem it follows that expression (50) represents the unique analytic 

function, agreeing with the sum of the series (49) in the circle | z | < 1. 

So this function, given at first only in the unit circle, has been extended 

to the whole plane. 

If we have a function /(z) defined inside some domain D, and there 

exists another function F(z) defined in a domain A, containing D, and 

agreeing with /(z) in D, then from the uniqueness theorem the value of 

F(z) in A is defined in a unique manner. 

The function F(z) is called the analytic continuation of/(z). An analytic 

function is called complete if it cannot be continued analytically beyond 

the domain on which it is already defined. For example, an entire function, 

defined for the whole plane, is a complete function. A meromorphic 

function is also a complete function; it is defined everywhere except at 

its poles. However there exists analytic functions whose entire domain 

of definition is a bounded domain. We will not give these more complicated 

examples. 

The concept of a complete analytic function leads to the necessity of 

considering multiple-valued functions of a complex variable. We show 

this by the example of the function 

Ln z = In r + uf>, 

where r = | z | and 4> = arg z. If at some point z0 = r0(cos (/>„ + /' sin <f>„) 

of the z-plane we consider some initial value of the function 

(Ln z)o = In r0 + i<f>0, 

then our analytic function may be extended continuously along a curve C. 
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As was mentioned earlier, it is easy to see that if the point z describes 

a closed path C0, issuing from the point r„ 

and circling around the origin (figure 22), 

and then returning to the point z0, we find 

at the point z0 the original value of In r0 but 

the angle <f> is increased by 2it. This shows 

that if we extend the function Ln z in a 

continuous manner along the path C, we 

increase its value by 2ni in one circuit of the 

contour C. If the point z moves along this closed contour n times, then 

in place of the original value 

(Ln z)0 = In r0 + 

we obtain the new value 

(Ln zX, = In r0 + (2nn + <£„)/. 

If the point z describes the contour m times in the opposite direction, 

we get 

(Ln z)_m = in r„ + (-2nm + 

These remarks show that on the complex plane we are unavoidably 

compelled to consider the connection between the various values of Ln z. 

The function Ln z has infinitely many values. With respect to its multiple¬ 

valued character, a special role is played by the point z = 0, around 

which we pass from one value of the function to another. It is easy to 

establish that if z describes a closed contour not surrounding the origin, 

the value of Ln z is not changed. The point z = 0 is called a branch 

point of the function Ln z. 

In general, if for a function /(z), in a circuit around the point a, we 

pass from one of its values to another, then the point a is called a branch 

point of the function /(z). 

Let us consider a second example. Let 

w = iVz. 

As noted previously, this function is also multiple-valued and takes on 

n values 

(cos - + /' sin , Vr (cos ^ -|- / sin ^ ), 
\ n w \ n nr 

■■■, <!/r (cos 
<f> + 2njn - 1) 

+ / sin 
<£ + 2ir{n — 1) 

')■ n n 



§5. PROPERTIES AND ANALYTIC CONTINUATION 191 

All the various values of our function may be derived from the single 

one 

H>0 = Vr„ (cos + i sin 

by describing a closed curve around the origin, since for each circuit 

around the origin the angle <f> will be increased by 2jt. 

In describing the closed curve (n — 1) times, we obtain from the first 

value of i!/z, all the remaining (n — 1) values. Going around the contour 

the nth time leads back to the value 

V/z. - frt (cos h+2”n + /Sin(cos ^ + i sin , 
\ n n / \ n n / 

i.e., we return to the original value of the root. 

Riemann surfaces for multiple-valued functions. There exists an easily 

visualized geometric manner of representing the character of a multiple¬ 

valued function. 

We consider again the function Ln z, and on the z-plane we make a 

cut along the positive part of the axis Ox. If the point z is prevented 

from crossing the cut, then we cannot pass continuously from one value 

of Ln z to another. If we continue Ln z from the point z„, we can arrive 

only at the same value of Ln z. 

The single-valued function found in this manner in the cut z-plane 

is called a single-ialued branch of the function Ln z. All the values of 

Ln z are distributed on an infinite set of single-valued branches 

ln r + i<f>, 2m < <f> ^ 2-n(n -f 1). 

It is easy to show that the nth branch takes on the same value on the 

lower side of the cut as the (n -f I)th branch has on the upper side. 

To distinguish the different branches of Ln z, we imagine infinitely 

many examples of the z-plane, each of them cut along the positive part 

of the axis Ox, and map onto the nth sheet the values of the argument z 

corresponding to the nth branch. The points lying on different examples 

of the plane but having the same coordinates will here correspond to one 

and the same number x + />; but the fact that this number is mapped 

on the nth sheet shows that we are considering the nth branch of the 

logarithm. 

In order to represent geometrically the fact that the nth branch of the 

logarithm, on the lower part of the cut of the nth plane, agrees with the 
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(n 4- l)th branch of the logarithm on the upper part of the cut in the 

(n + l)th plane, we paste together the nth plane and the (n + l)th, 

connecting the lower part of the cut in the nth plane with the upper part 

of the cut in the (n + l)th plane. This construction leads us to a many- 

sheeted surface, having the form of a spiral staircase (figure 23). The 

role of the central column of the staircase is played by the point z = 0. 

(n) 

Fig. 23. 

If a point passes from one sheet to another, then the complex number 

returns to its original value, but the function Ln z passes from one branch 

to another. 

The surface so constructed is called the Riemann surface of the function 

Ln z. Riemann first introduced the idea of constructing surfaces repre¬ 

senting the character of multiple-valued analytic functions and showed 

the fruitfulness of this idea. 

Let us also discuss the construction of the Riemann surface for the 

function w = y/z. This function is double-valued and has a branch 

point at the origin. 

We imagine two examples of the r-plane, placed one on top of the 

other and both cut along the positive part of the axis Ox. If z starts from 

z0 and describes a closed contour C containing the origin, then \/z 

passes from one branch to the other, and thus the point on the Riemann 

surface passes from one sheet to the other. To arrange this, we paste the 

lower border of the cut in the first sheet to the upper border of the cut 

in the second sheet. If z describes the closed contour C a second time, 

then \/z must return to its original value, so that the point in the Riemann 

surface must return to its original position on the first sheet. To arrange 

this, we must now attach the lower border of the second sheet to the 

upper border of the first sheet. As a result we get a two-sheeted surface, 
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intersecting itself along the positive part of the axis Ox. Some idea of 
this surface may be obtained from figure 24, showing the neighborhood 
of the point z = 0. 

In the same way we can construct a many-sheeted surface to represent 
the character of any given multiple-valued function. The different sheets 
of such a surface are connected with one another around branch points 

Fig. 24. 

of the function. It turns out that the properties of analytic functions are 
closely connected with the geometric properties of Riemann surfaces. 
These surfaces are not only an auxiliary means of illustrating the character 
of a multiple-valued function but also play a fundamental role in the 
study of the properties of analytic functions and the development of 
methods of investigating them. Riemann surfaces formed a kind of 
bridge between analysis and geometry in the region of complex variables, 
enabling us not only to relate to geometry the most profound analytic 
properties of the functions but also to develop a whole new region 
of geometry, namely topology, which investigates those geometric 
properties of figures which remain unchanged under continuous defor¬ 
mation. 

One of the clearest examples of the significance of the geometric 
properties of Riemann surfaces is the theory of algebraic functions, i.e., 
functions obtained as the solution of an equation 

f(z, w) = 0 

the left side of which is a polynomial in z and w. The Riemann surface 
of such a function may always be deformed continuously into a sphere 
or else into a sphere with handles (figure 25). The characteristic property 
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of these surfaces is the number of handles. This number is called the 

genus of the surface and of the algebraic function from which the surface 

was obtained. It turns out that the genus of an algebraic function determines 

its most important properties. 

§6. Conclusion 

The theory of analytic functions arose in connection with the problem 

of solving algebraic equations. But as it developed it came into constant 

contact with newer and newer branches of mathematics. It shed light 

on the fundamental classes of functions occurring an analysis, mechanics, 

and mathematical physics. Many of the central facts of analysis could 

at last be made clear only by passing to the complex domain. Functions 

of a complex variable received an immediate physical interpretation in 

the important vector fields of hydrodynamics and electrodynamics and 

provided a remarkable apparatus for the solution of problems arising 

in these branches of science. Relations were discovered between the 

theory of functions and problems in the theory of heat conduction, 

elasticity, and so forth. 

General questions in the theory of differential equations and special 

methods for their solution have always been based to a great extent on 

the theory of functions of a complex variable. Analytic functions entered 

naturally into the theory of integral equation and the general theory 

of linear operators. Close connections were discovered between the 

theory of analytic functions and geometry. All these constantly widening 

connections of the theory of functions with new areas of mathematics 

and science show the vitality of the theory and the continuous enrichment 

of its range of problems. 

In our survey we have not been able to present a complete picture of 

all the manifold ramifications of the theory of functions. We have tried 
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only to give some idea of the widely varied nature of its problems by 

indicating the basic elementary facts for some of the various fundamental 

directions in which the theory has moved. Some of its most important 

aspects, its connection with the theory of differential equations and 

special functions, with elliptic and automorphic functions, with the 

theory of trigonometric series, and with many other branches of mathe¬ 

matics, have been completely ignored in our discussion. In other cases 

we have had to restrict ourselves to the briefest indications. But we hope 

that this survey will give the reader a general idea of the character and 

significance of the theory of functions of a complex variable. 
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CHAPTER X 
PRIME NUMBERS 

§1. The Study of the Theory of Numbers 

Whole numbers. As the reader knows from the introduction to 

Chapter I, mankind had to deal even in the most ancient times with whole 

numbers, but the passage of many centuries was necessary to produce 

the concept of the infinite sequence of natural numbers 

1,2, 3, 4, 5.-. (1) 

Nowadays, in the most various questions of practical activity, we are 

constantly faced with problems involving whole numbers. Whole numbers 

reflect many quantitative relations in nature; in all questions connected 

with discrete objects, they form the necessary mathematical apparatus. 

Moreover, whole numbers play an important role in the study of the 

continuous. Thus, for example, in mathematical analysis one considers 

the expansion of an analytic function in a power series with integral 

powers of x 

f(x) = a0 + axx + a^x* + — + a„xf + —. 

All computations are essentially carried out with whole numbers, as is 

immediately obvious from even a superficial examination of automatic 

computing machines or desk calculators, or of mathematical tables, such 

as tables of logarithms. After these operations on whole numbers have 

been carried out, decimal points are inserted in well-defined positions, 

corresponding to the formation of decimal fractions; such fractions, like 

all rational fractions, represent quotients of two whole numbers. In 

dealing with any real number in practical work (for example, n), we 

replace it in fact by a rational fraction (for example, we assume that 

n = 22/7, or that n = 3.14). 

199 
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While the establishment of rules for operating on numbers is the concern 

of arithmetic, the deeper properties of the sequence of natural numbers (1), 

extended to include zero and the negative integers, are studied in the 

theory of numbers, which is the science of the system of integers and, in 

an extended sense, also of systems of numbers constructed in some definite 

manner from the integers (see, in particular, §5 of this chapter). It is 

understood that the theory of numbers considers integers not as isolated 

one from another but as interdependent; the theory of numbers studies 

properties of integers that are defined by certain relations among them. 

One of the basic questions in the theory of numbers concerns divisibility 

of one number by another; if the result of dividing the integer a by the 

integer b (not equal to zero) is an integer, i.e., if 

a = b • c 

(a, b, c are integers) then we say that a is divisible by b or that b divides a. 

If the result of dividing the integer a by the integer b is a fraction, then we 

say that a is not divisible by b. Questions of divisibility of numbers are 

encountered constantly in practice and also play an important role in 

some questions of mathematical analysis. For example, if the expansion 

of a function in integer powers of x 

f(x) = aB + atx + + ••• + anx" + — (2) 

is such that all odd coefficients (with indices not divisible by 2) are equal 

to zero, i.e., if 

/(*) = a„ + tfjJc2 + — + atixik + 

then the function satisfies the condition 

A- x) =/(*); 

such a function is called an even function, and its graph is symmetric 

with respect to the axis of ordinates. But if in the expansion (2) all the even 

coefficients (with indices divisible by 2) are equal to zero, in other words, 

if 

f(x) = + ayx* 4- — + a^x***' + 

then 

/(- x) = -/(*); 

in this case the function is called odd, and its graph is symmetric with 

respect to the origin. 
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Thus, for example 

Xs Xs sinAr = x (odd function); 

, X* X* 
(even function). COS X = 1 

The geometric question of the possibility of construction of a regular 

n-polygon with ruler and compass turns out to depend on the arithmetic 

nature of the number n.* 

A prime number is any integer (greater than one) that has only the two 

positive integer divisors, one and itself. One is not considered as a prime 

number since it does not have two different positive divisors. 

Thus the prime numbers are 

2, 3, 5,7, 11, 13, 17, 19,23,29,-. (3) 

Prime numbers play a fundamental role in the theory of numbers because 

of the basic theorem: Every integer n > 1 may be represented as the 

product of prime numbers (with possible repetition of factors), i.e., in the 

form 

n = P\'P\' #*. (4) 

where /»,</>*< — <pk are primes and a,, a*, •••, a* are integers not 

less than one; furthermore, the representation of n in the form (4) is unique. 

The properties of numbers connected with the representation of numbers 

as a sum of terms are called additive; the properties of numbers relating 

to their representation in the form of a product are called multiplicative. 

The connection between additive and multiplicative properties of numbers 

is extraordinarily complicated; it has given rise to a series of basic pro¬ 

blems in the theory of numbers. 

The existence of these difficult problems in the theory of numbers 

together with the fact that the whole number is not only the simplest and 

clearest of all mathematical concepts but is closely related to objective 

reality have led to the creation, for use in the theory of numbers, of 

profound new ideas and powerful methods, many of which have become 

important in other branches of mathematics as well. For example, a vast 

influence on all developments of mathematics has been exerted by the idea 

of the infinite sequence of natural numbers, reflecting the infiniteness of 

the material world in space and time. Of great significance also is the fact 

the terms in the sequence of natural numbers are ordered. Study of the 

* See Chapter IV. 
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operations on integers has led to the concept of an algebraic operation, 

which plays a basic role in several different branches of mathematics. 

Of immense importance in mathematics has been the concept, partic¬ 

ularly applicable to arithmetical questions, of an algorithm, a process of 

solving problems based on the repeated carrying out of a strictly defined 

procedure; in particular, the role of the algorithm is fundamental to the 

use of mathematical machines. The essential nature of the algorithmic 

method for solving a problem is clearly illustrated by the Euclidean 

algorithm for finding the greatest common divisor of two natural numbers 

a and b. 

Suppose a > b. We divide a by b and find the quotient and, if b does 

not divide a, the remainder r2 

a = bqx + rt, 0 < r2 < b. (5t) 

Further, if r2 0. we divide b by rt 

b = Ws + '■j, 0 < r, < r2. (52) 

Then we divide r2 by rs and continue until we get to a zero remainder, 

which must necessarily happen for a decreasing set of nonnegative integers 

r2,r3, —. Let 

rn-i = rn-iQn-i rn > (^n-j) 

rn-1 = rnRn . (5n) 

then r„ is at once seen to be the greatest common divisor of a and b. For if 

two integers / and m have a common divisor d, then for any integers h 

and k the number hi + km will also be divisible by d. Let us denote the 

greatest common divisor of a and b by 8. From equation (5,) we see that 

S is a divisor of r2; from (52) it follows that 8 is a divisor of rs, •••; from 

(5„_,) that 8 is a divisor of r„ . But r„ itself is a common divisor of a and b, 

since in (5„) we see that rn divides from (5n_,) that rn divides r„_2, 

etc. Thus 8 is identical with r„ and the problem of finding the greatest 

common divisor of a and b is solved. We have here a well-defined 

procedure, of the same type for all a and b, which leads us automatically 

to the desired result and is thus a characteristic example of an algorithm. 

The theory of numbers has exerted an influence on the development of 

many mathematical disciplines: mathematical analysis, geometry, classical 

and contemporary algebra, the theory of summability of series, the theory 

of probability, and so forth. 

Methods of the theory of numbers. In its methods, the theory of 

numbers is divided into four parts: elementary, analytic, algebraic, ahd 

geometric. 



§1. THE STUDY OF THE THEORY OF NUMBERS 203 

The elementary theory of numbers studies the properties of integers 

without calling on other mathematical disciplines. Thus, starting from 

Euler’s identity 

(4 +x\ + xl+ JrjKyi + y\ + yl + yj) = (x^, + + x4y,)2 

+ (xty3 ~ xrf, + Xzy, - x^)2 + (x,y, - Xjj-, + x<yt - x*y4)2 

+ (x^, - Xty, + Xjy, - x^j)2, (6) 

we may very simply prove that every integer N > 0 may be expressed as 

the sum of the squares of four integers; i.e., every integer is representable 

in the form 

N = X2 + y* + z2 + u\ 

where x, y, z, and u are integers. * 

The analytic theory of numbers makes use of mathematical analysis for 

problems of the theory of numbers. Its foundations were laid by Euler 

and it was developed by P. L. CebySev, Dirichlet, Riemann, Ramanujan, 

Hardy, Littlewood, and other mathematicians, its most powerful methods 

being due to Vinogradov. This part of the theory of numbers is closely 

connected with the theory of functions of a complex variable (a theory 

that is very rich in practical applications), and also with the theory of 

series, the theory of probability, and other branches of mathematics. 

The basic concept of the algebraic theory of numbers is the concept of 

an algebraic number, i.e., a root of the equation 

ctox" + ajX"-1 + fl2x"-2 + — + a„_,x + an = 0, 

where a0,a1 ,at, •••, a„ are integers.* 

The greatest contributions to this branch of the theory of numbers were 

made by Lagrange, Gauss, Kummer, E. I. Zolotarev, Dedekind, A. O. 

Gel’fond, and others. 

The basic objects of study in the geometric theory of numbers are 

“space lattices”; that is, systems consisting entirely of “integral” points, 

all of whose coordinates in a given rectilinear coordinate system, rectan¬ 

gular or oblique, are integers. Space lattices have great significance in 

geometry and in crystallography, and are intimately connected with 

important questions in the theory of numbers; in particula,, with the 

* We have here an example of an indeterminate equation, to be investigated from 
the point of view of its solvability in integers. 

tlf a* = 1, the algebraic number is called an algebraic integer. A number which 
is not algebraic is called transcendental. 
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arithmetic theory of quadratic forms, i.e., the theory of quadratic forms 

with integer coefficients and integer variables. Basic work in the geometric 

theory of numbers is due to H. Minkowski and G. F. Voronol. 

It is-to be noted that the methods of the analytic theory of numbers 

have important applications in the other two branches, the algebraic 

and the geometric. Particularly noteworthy is the problem of counting 

the number of integral points in a given domain, a problem which is 

important in certain branches of physics. Various means of approach to 

this problem were indicated by G. F. Voronol and methods for its solution 

were developed by I. M. Vinogradov. 

The deep-lying reason for the power of analytic methods in the theory 

of numbers is that they enrich our study of the interrelations among 

discrete integers by summoning to our aid new relations among continuous 

magnitudes. 

We must emphasize that in this chapter we are considering only certain 

selected questions in the theory of numbers. 

§2. The Investigation of Problems Concerning Prime Numbers 

The number of primes is infinite. In considering the sequence (3) 

of prime numbers 

2, 3, 5, 7, II, 13, 17, 19, - 

it is natural to ask the question: Is this sequence infinite? The fact that any 

integer can be represented in the form (4) does not yet solve the problem, 

since the exponents a,, •••, ak may take on an infinite set of values. An 

affirmative answer to the question was given by Euclid, who proved that 

the number of primes cannot be equal to any finite integer k. 

Let px,Pi, ••■,Pk be primes; then the number 

m — PlPl Pk + 1. 

since it is an integer greater than one, is either itself a prime or has a 

prime factor. But m is not divisible by any one of the primes px, p2, •••,pk 

since, if it were, the difference m — pxpz ••• pk would also be divisible by 

this number; which is impossible, since this difference is equal to one. 

Thus, either m itself is a prime or it is divisible by some prime pk+1, 

different from px, —,pk . So the set of primes cannot be finite. 

The sieve of Eratosthenes. The Greek mathematician Eratosthenes in 

the 3rd century B.C. described the following “sieve” method for finding 
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all the primes not exceeding a given natural number N. We write all the 

integers from 1 through N 

1, 2, 3, 4, N, 

and then cross out, from the left, first the number 1, then all numbers 

except 2 that are multiples of 2, then all except 3 that are multiples of 3, 

and then all except 5 that are multiples of 5 (the multiples of four have 

already been crossed out), and so forth; the remaining numbers will then 

be primes. It is worthy of note that the process of crossing out needs to 

be^ontinued only to the point where we have found all primes less than 

VN, since every composite number (i.e., not prime) that is not greater 

than N will necessarily have a prime divisor not exceeding VN. 

Examination of the sequence of prime numbers in the sequence of all 

positive integers would lead us to believe that the law of distribution of 

prime numbers must be very complicated; for example, we encounter 

primes such as 8,004,119 and 8,004,121 (the so-called twin primes) 

whose difference is two, and also primes that are far from each other, 

such as 86,629 and 86,677, between which there is no other prime. But the 

tables show that "on the average” prime numbers occur more and more 

rarely as we traverse the sequence of integers. 

Euler’s identity; his proof that the number of primes is infinite. The 

great 18th century mathematician L. Euler, a member of the Russian 

Academy of Sciences, introduced the following function, with argument 

s > 1, which at the present time is denoted by £(j): 

«*)=i+4- + T- + ,''+-^ + "'- (7) 

As we know from Chapter II, this series converges for s > 1 (and 

diverges for s < 1). Euler derived a remarkable identity that plays a very 

important role in the theory of prime numbers: 

(8) 

where the symbol np means that we must multiply together the expressions 

1/[1 — (1 /p’)\ for all primes p. To see how the proof of this identity goes, 

we note that 1/(1 — q) = 1 + q + q1 + ••• for | q \ < 1, so that 

'+~F + ?T + 
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Multiplying these series for the various primes p and recalling that every n 

is uniquely representable as the product of primes, we find that 

n(‘ +yr + yr + -) = 1 + 77 + + + Ir + ’ 

For a rigorous proof, of course, we must establish the validity of our limit 

process, but this presents no particular difficulty. 

From identity (8) we may derive as a corollary the fact that the series 

1 Ip, consisting of the reciprocals of all the primes, diverges (this pro¬ 

vides a new proof of the fact already known to us that the prime numbers 

cannot be finite in number), and also that the quotient of the number of 

prime numbers not exceeding x, divided by x itself, converges to zero for 

unboundedly increasing x. 

The investigations of P. L. Cebysev on the distribution of the prime 

numbers in the sequence of natural numbers. We denote by n(x), as is 

now customary, the number of prime numbers not exceeding x; for 

example, w(10) = 4, since 2, 3, 5, and 7 are all the primes not exceeding 

10, -Mjt) = 2, since 2 and 3 are all the primes not exceeding n. As noted 

earlier 

lim 
v{x) 

= 0. 
z-ce X 

But just how does the ratio tt{x)Ix decrease; in other words what is the 

law of growth for tt(j»r)7 May we look for a fairly simple, well-known 

function that differs only a little from tt(x)? The famous French mathe¬ 

matician Legendre, in considering tables of prime numbers, stated that 

such a function will be 

In x — A 
(9) 

where A = 1.08-', but he did not give a proof of this proposition. Gauss, 

who also considered the question of the distribution of the prime numbers, 

conjectured that v{x) differs comparatively little from f dll In t (we note 

that the following relation holds: 

rJL 
lim -* - = 1, (10) 
*-<o X 

In x 

which is established by integrating by parts and finding estimates for the 

new integral). 
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The first mathematician since the time of Euclid to make real progress 

in the very difficult question of the distribution of the prime numbers 

was P. L. CebySev. In 1848, basing his work on a study of Euler’s function 

£(j) for real s, CebySev showed that for arbitrarily large positive n and 

arbitrarily small positive a there exist arbitrarily large values of x for which 

and also arbitrarily large x for which 

ax 

In" x ' 

ax 

In" x ’ 

which is in good agreement with Gauss’s assumption. In particular, 

taking n = 1 and applying (10), CebySev established the fact that 

I, 
*-MO X 

In x 

(II) 

provided that the limit in (11) exists. 

CebySev also refuted Legendre’s assumption concerning the value of the 

constant A which occurs in expression (9) as giving the best approximation 

to tt(x); he showed that this value can only be A = 1. 

The well-known French mathematician Bertrand was led by his 

investigations in the theory of groups to the following conjecture, which 

he verified empirically from the tables up to quite large values of n: If 

n > 3, then between n and 2n — 2 there is at least one prime. All the 

attempts of Bertrand, and of other mathematicians, to prove this con¬ 

jecture proved fruitless until 1850, when CebySev published his second 

article on prime numbers, in which he not only proved the conjecture 

(“Bertrand’s postulate”) but also showed that for sufficiently large x 

A* < jr < A*' (>2> 

In x 

where 

0.92 < At < 1 and 1 < A2 < 1.1. 

In §3 we give a simplified presentation of CebySev’s method, which 

leads, however, to considerably less precise results than those of CebySev 

himself. 
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CebySev’s works had a great influence on many mathematicians, in 

particular Sylvester and Poincar6. In the course of more than forty years 

a number of scientists busied themselves with the improvement of 

CebySev’s inequality (12) (increasing the constant on the left side of the 

inequality, and decreasing the constant on the right side), but they were 

unable to establish the existence of the limit 

lim 
X-KD 

"(*) 
x 

In x 

(as was pointed out previously, we know from the work of CebySev that 

if this limit exists it is equal to one). 

Only in 1896 did Hadamard, using arguments from the theory of 

functions of a complex variable, prove that the function @(x), introduced 

by CebySev and defined by the equation 

&(x) = % In p. 

satisfies the condition 

lim «E-1. 
*-KO X 

(13) 

from which it is relatively easy to obtain the relation (11) without any 

further assumptions; this is the so-called asymptotic law for the distribu¬ 

tion of primes. 

The result (13) was found by Hadamard on the basis of the investigations 

by the famous German 19th century mathematician Riemann, who 

studied the £(s) function of Euler (7) for complex values of the variable 

s — a 4- it (CebySev himself had considered this function only for real 

values of the argument).* 

Riemann showed that the function £($), defined in the half plane a > 1 

by the series (7) 

« 1 

has the property that 

*In 1949 A. Selberg gave an elementary proof (i.e., not using complex variables) 
of the asymptotic law of distribution of primes. 
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is an entire transcendental function (for a < 1 the series (7) ceases to 

converge, but the values of £(s) in the half plane a ^ 1 are defined by 

analytic continuation) (see Chapter IX). Riemann made the conjecture 

(“the Riemann hypothesis”) that all roots of £(s) in the strip 0 < a < 1 

have real part equal to 5, i.e., lie on the straight line a = | ; the question 

of the correctness of this assumption remains open to this day. 

An important step in the proof of (13) was the establishment of the fact 

that on the straight line 0 = 1 there are no roots of £(j). 

The investigation of the behavior of £(j) led to the development of an 

elegant theory of entire and meromorphic functions, with important 

practical applications. 

The work of Vinogradov and his students in the theory of prime numbers. 

From equation (13), which by (10) may be written in the form 

lim 
X-KO 

”(*) = 1, (14) 

there arose the question of the degree of exactness with which the function 

dll In t represents n(x). The best results in this direction were found by 

N. G. Cudakov and were based on Vinogradov’s method of trigonometric 

sums (this method will be described in §4), which also allowed Cudakov 

to decrease considerably the bounds between which we can find at least 

one prime. Namely, it had been established previously that if we consider 

the sequence 

l240, 2240, 3240, n240, (n + l)240, (15) 

then, starting with some n = n0, there must exist, between any two 

adjacent terms, i.e., between n240 and (n + l)240, at least one prime. 

We note that, as follows from the binomial formula 

(n + l)240 - n260 > 250nM», 

this difference is very large. N. G. Cudakov succeeded in replacing the 

sequence (15) by 

1*. 24, 34, •••, n*, (n + l)4, ••*, (16) 

whose terms lie considerably closer together than those of the sequence 

(15) but which also contains at least one prime between every two suc¬ 

cessive terms, i.e., between n* and (n + l)4, beginning at some n = n0. 

Subsequently, this result has been improved by replacing the fourth 

powers by cubes. 
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If k and / are relatively prime, i.e., have no common divisor larger than 

one, then an arithmetic progression with general term kt + / contains 

infinitely many prime numbers. This fact, a generalization of the result of 

Euclid, was established in the 19th century by Dirichlet. But can we find 

a bound that will certainly not be exceeded by the smallest prime in the 

progression kt + /? The Leningrad mathematician Ju. V. Linnik proved 

the existence of an absolute constant C with the property that in progres¬ 

sion kt + I (k and / relatively prime) there necessarily exists at least one 

prime less than kc. Thus Linnik provided an essentially complete solution 

of the problem, raised many years before, of the least prime in an arith¬ 

metic progression; further investigators can only decrease the value of 

the constant C. Linnik also carried out very important investigations 

concerning the zeros of the function £(r) and more general functions. 

As mentioned previously, the best results with regard to the distribution 

of primes were found by the method of Vinogradov for estimating trigono¬ 

metric sums. 

A trigonemetric sum is a sum of the form 

V e*n(/tx) 

A<x<B 

where f(x) is a real function of x, and x takes on all integral values between 

A and B, or some specific subset of these values, for example the primes 

between A and B. Since the modulus of e*"" for real z is equal to one, and 

the modulus of a sum does not exceed the sum of the moduli of its terms, 

we have 

I eM,ix) I ^ P. (17) 
1 x-l 1 

This “trivial” estimate can be improved considerably in a number of 

cases; the decisive steps in this direction were taken by Vinogradov. For 

definiteness, let J\x) be a polynomial 

f(x) = cvr" -I- + - + a,x + *0 • 

If all the a are integers, then = 1 for integral x, and in this case 

the estimate (17) obviously cannot be improved. But if a,, •••, a„ are not 

all integers then, as Vinogradov showed, the estimate (17) may be sharp¬ 

ened by approximating any of these coefficients by rational fractions with 

denominators not exceeding some bound (it may be shown that any a 

lying between 0 and 1 is representable in the form oc = a/q + z, where a 

and q are relatively prime integers, q ^ r, | z | < \/q' and r is a pre¬ 

assigned integer greater than 1). 
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The creation of the method of trigonometric sums by Vinogradov allowed 

him to solve a series of very difficult problems in the theory of numbers. 

In particular, in 1937 he solved a famous problem stated by Goldbach, 

by proving that every sufficiently large odd N is representable as the sum 

of three primes 

N — Pi 4- Pt + Pi • (18) 

This problem arose in 1742 in correspondence between Euler and another 

member of the Russian Academy of Sciences, C. Goldbach, and remained 

unsolved for almost two centuries, despite the efforts of a number of emi¬ 

nent mathematicians. 

As we have seen, the inequality (4) shows that prime numbers play a 

fundamental role in the multiplicative representation of an odd number 

by means of primes. It is easy to show from (18) that one can represent a 

sufficiently large even number as the sum of no more than four primes.* 

In this manner, the Vinogradov-Goldbach theorem established a profound 

connection between additive and multiplicative properties of numbers. 

The significance of the method of trigonometric sums created by 

Vinogradov is not restricted to the theory of numbers. In particular, it 

plays an important role in the theory of functions and in the theory of 

probability. Some idea of Vinogradov’s method may be obtained from 

§4 of this chapter. 

Readers who are interested in a more detailed treatment may consult 

Vinogradov’s book “The method of trigonometric sums in the theory of 

numbers,” after a preliminary reading of his book “Foundations of the 

theory of numbers.” 

§3. CebySev’s Method 

CebySev’s 0 function and its estimates. We now give a simplified 

presentation of CebySev’s method for computing the number of primes 

lying with given limits. For brevity we agree to use the following notation: 

if B is a positive variable quantity that may grow unboundedly, and A is 

another quantity such that | A | grows “no more rapidly” than CB, where 

C is a positive constant (more precisely, if there exists a constant C > 0 

such that starting from some instant we always have | A \/B < C), then we 

will write 

A = 0(B). 

* The correctness of Euler's conjecture that every sufficiently large even number 
N can be represented as the sum of two primes remains an open question to this day. 
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This is usually read as: 

example 

since everywhere 

“A is a quantity of the order of B.” Thus, for 

sin x = 0(1), 

I sin x | 

in exactly the same way 

5x* cos lx = 0(x*). 

We will also denote by [at] the integral part of x, i.e., the largest integer not 

exceeding x; thus, for example 

M = 3, [5] = 5, [- 1.5] = - 2, [0.999] = 0. 

We now pose the following question: Let p be a prime, and n a natural 

number, and let n\, as usual, denote the product 1 -2-3.n; we note 

incidentally that as n increases the value of n! grows very rapidly. What is 

the largest power a of the prime p that divides n\ with no remainder? 

Among the numbers 1, 2, —, n, there will be precisely [nip] numbers 

divisible by p\ the number of these which will also be divisible by p2 is 

[n/p3]; further, of these there will be [n/p3] divisible by p3, etc. Hence it is 

easy to show that 

(where the series terminates, since [n/p‘] > 0 only for n ^ p'). Thus, in 

the last sum every factor of the product 1 -2-3.n such that thehighest 

power of the number p by which it is divisible is equal to pm will occur 

precisely m times, once as a multiple of p, once as a multiple of p2, once as 

a multiple of p3, •••, and finally once as a multiple of pm. 

From this result and from the representability of any natural number 

in the form (4) it follows that nl will be the product of powers of the form 

taken for all primes p ^ n. Thus 

In (/i!) will be the sum of the loga¬ 

rithms of these powers, which can be 

concisely written in the form 

+ [-£-] + ■") ,nP- 09) 
Fig. 1. 
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We simplify equation (19). Since y = In x is an increasing function, 

we have 

j.tn+1 j-m+l j.m+1 

In m — In ml dx < In x dx < ln(m +1) dx = ln(m + 1) 
■’ m J m J in 

as is clear from figure 1. Thus 

In n\ = In 1 + In 2 + ••• + In n 

< j In x dx -f J3 In x dx + ••• 

+ f In x dx + In n = f In x dx + In n, 

on the other hand 

In nl > In 1 + f In x dx + • • • 

+ f In x dx + f In x dx = f In x dx. 
*»»—i Ji 

Using the formula for integration by parts, we find 

r" r 1 
In x dx = [x • In *]" — x • - • dx = n In n — (n — 1). 

J i J i x 

n\nn — n + 1 <Inn! < n In n — n + 1 +lnn, 

and hence it follows that 

In n\ = n In n + O(n). (20) 

We note that In n = O(n); further, for n-+ oo, the function In n increases 

more slowly than any positive power of n, i.e., for any constant a > 0 

lim JUJL = o, (21) 

since by the rule for indeterminate forms (cf. Chapter II) 

In n .. n 1 .. 1 . 
lim- -- lim-= - lim-= 0. 
n-KO n-«c ^-1 
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Further, we find 

X ([>] + [>] + -)'+ + >' 

= X 
n \np In m 

17 < 2" 2 -tF < 2» 2 = 2”Cd - «„>, 

(22) 

In wi 
where C0 is the sum of the convergent series V —. The absolute 

m—1 ^ 

convergence of this series is established by using (21), for example, for 

a = £, by the comparison test and the so-called integral test for conver¬ 

gence (cf. Chapter II, §14). In view of (20) and (22), equation (19) may be 

put in the form 

X f^] ln p = " ln " + (23) 
J><n 

We now consider the function introduced by CebySev 

0(i.)=2)ln/> (24) 
P«n 

(the logarithm of the product of all prime numbers not exceeding n). 

Equation (23) can be rewritten as: 

0 (l) + e ® + 0 © + 9 © + -=« In n + O(n). (25) 

In fact, every given ln p enters into all the sums of the form 8(n/s), 

where p < n/s, i.e., where s < nip, and the number of such sums 8(n/s) 

is equal to [nip]. 

Equation (25) is also valid for any noninteger n. To see this, it is 

obviously sufficient to prove that it is true for all x under the condition 

n<r<«+l; and for this it is enough to prove that replacing n by x 

in the left side of (25) does not change that side, and that the first term in 

the right side may increase by an amount which is O(n). But the first follows 

from the fact that such a replacement will not increase the value of any 

one of the terms of the left-hand side (such an increase would be possible 

only if n were increased by more than unity) and, of course, the left side 

is not decreased. The second follows from the fact that by the formula 

for the increment of a function (cf. Chapter II) 

f(x) — f(a) = (x - a)f'(£), a <{< x. 
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we have 

215 

x In x — n In n = (x — n) • (In f + 1), n < f < x, 

and the right side of this last equation is less than In (n -F 1) + 1 = O(n), 

since 0 < x — n < 1. From equation (25) let us subtract twice the equation 

derived from (25) by replacing n by n/2; 

0 (j) + B g) + 9 g) + e g) + ••• = « In n + O(n), 

26 g) 4- 20 g) + ••• = 2 • ^ • In ^ + O(n), 

we obtain 

0(t) - *© +«© - »© + - = »>n2 + 0(1.) < ctn, 

where C, is some positive constant. But 6(n/1) — 6(n/2) is not larger 

than the whole left side, since the differences, 6(n/3) — 0(n/4), 

6(n/5) — 6{n/6), ••• cannot be negative. Thus it follows from this last 

inequality that 

Inserting here the numbers n/2, n/4, ••• in place of n, we also get 

hence, using the fact that 0(n/2*) = 0 for sufficiently large k (when 

n/2* < 2), addition of terms gives 

6(n) < C, jn + \ + J + -) = 2C,n. (26) 

Returning to equation (23), we find 

0 < X ~n{nP ~ X 0 lnP < X [nP = *»> < 2Ci" = 0(n), 
PinP p^n '■P1 Pin 
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so that equation (23) gives 

X-lnp = nln/j + 0(n), 
p%P 

X — = ^ « + OC, (27) 
P«n P 

where C is a constant greater than zero and 8 depends on the number n 

in such a manner that | 8 \ ^ 1. 

An estimate for the number of primes in a given interval. We now 

show that one may choose a positive constant M in such a manner that 

between n and Mn there will lie as many primes p as desired, if n is 

sufficiently large. Namely, we establish simple inequalities for the number 

T of primes in the interval n < p < Mn. Obviously, 

y, lnp 
n<pgMn P 

= s 
P SM« P Pgr 

Zl *P 

> P 

From equation (27), replacing n by Mn, we get 

= In (Mn) 4- 8'C = In M + In n + 8'C, (29) 

where | 0' | < 1; thus, in view of equations (28), (29), and (27), we have 

X = In M + 8'C - 8C = In M + 280C, 
n<p «Mn P 

where | 80 \ < 1, i.e.. 

In M — 2C < X < ln M 4- 2C. (30) 
rt<p$Mn P 

On the other hand, since y = ln x/x for x > e is a decreasing function 

(since y' = (1 — ln jr)/x* < 0 for ln x > 1, i.e., x > e), it follows that 

for n ^ 3 
T In Mn < y lnp < ^ Inn 

Mn " P n 

hence, from (30), we have 

^ M - 2C 
n 
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and 
T In (Mn) 

Mn 
< In M + 2 C. (32) 

We now choose the constant M such that the right side of (31) is equal to 

one 

In A/ - 2C = 1, 

i.e., 

and we set 

M = e*c+I, 

L = A/(ln A/ + 2C). 

Then for the number T of primes lying between n and Mn, we get from 

(31) and (32) the inequalities 

n 

In n 
< T < L 

n 

In n ’ 
(33) 

which it was our purpose to establish. Since n/In n-*oo for unbounded 

increase in n, it follows that T-*co also. 

§4. Vinogradov’s Method 

Vinogradov’s method in its application to the solution of Goldbach’s 

problem. We attempt in this section to give some account of Vinogradov’s 

method for the particular case of Goldbach’s problem of representing an 

odd number as the sum of three prime numbers. 

An expression in the form of an integral for the number of representations 

of N as the sum of three primes. Let N be a sufficiently large odd number. 

We denote by I(N) the number of representations of N as the sum of three 

primes; in other words, the number of solutions of the equation 

N = Pi + Pt + Ps (34) 

in prime numbers px ,pt, and p3 . 

Goldbach’s problem will be solved if it can be established that I(N) > 0. 

Vinogradov’s method allows us not only to establish this fact (for 

sufficiently large N), but also to find an approximating expression for 

W 
I(N) may be written in the following form 

I(N)= V V V •»+*+*-*>« 
PipPiSW J 0 

(35) 
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where the summations are taken over the prime numbers not exceeding N. 

In fact, for integer n^E 0 

glninz da = 

> o 2 irni ^ iL- 

since 

but if n — 0, then 

e2"'" _ cos 2nn + / sjn jnn = 1; 

C* e^da = (da = 1. 
* 0 * 0 

e°) = 0, 

Thus, every time the primes px, pt, and p3 have the sum N the integral 

inside the summation sign in (35) has the value one, and when the sum 

Pi + Pt + Pa 9^ N, this integral is equal to zero, which proves the validity 
of equation (35). 

Since eMa • e2"16 = etn,ia+b) and the integral of a sum of terms is equal 

to the sum of the integrals of these terms, it follows from equation (35) 

that 

/(A0= (T e*"*0)* 
10 Vv<N ' 

Introducing the notation 

r« - X e2’1” 

we then have 

I(N)= f* T*e~utaN da. 
Jo 

(36) 

(37) 

Decomposition of the interval of integration into basic and complementary 

intervals. Let h be a quantity, chosen in an appropriate manner depending 

on N, which increases unboundedly with N but is small in comparison with 

N and even with and set t = N/h. Since the function integrated 

in (37) has a period equal to one, the interval of integration in (37) may be 

replaced by the segment from — (1/r) to 1 — (1/t). Thus 

I(N) = T*e-2’lx" da. (38) 
J-llT 

We now consider all proper irreducible fractions a/q with denominators 

not exceeding h, and distinguish in the segment — (1/r) < a < 1 — (I/t) 

the “basic” intervals corresponding to these fractions 

a 

<7 

II 

T 
(39) 
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for sufficiently large N these intervals, as may be proved,* will have no 

points in common. In this manner, the segment — (1/r) ^ a ^ 1 — (1/r) 

can be decomposed into basic intervals and “complementary” intervals. 

We represent I(N) as the sum of two terms 

I(N) = UN) + UN), (40) 

where UN) denotes the sum of the integrals on the basic intervals and 

UN) is the sum of the integrals on the complementary intervals. As will 

be seen below, for unbounded growth of odd N we also have unbounded 

growth of /,(A'), with 

lim 
AT-* co 

UN) 

UN) 
= 0. (41) 

So we see from (40) that the number of representations of an odd N as the 

sum of three primes grows unboundedly with N, so that, in particular, 

we have proved Goldbach’s conjecture for all sufficiently large odd N. 

An expression for the integral on the basic intervals. Let a belong to 

one of the basic intervals; from (39), a = a/q + z, where 1 < ? < A and 

| z | < 1/t. We break up the sum (36) 

r* = T eu,ta = V eulio,,1+‘,p, 
v£n kn 

extended over all primes not exceeding N into partial sums 

form 

t;.m = X f2»i(a/«+s)p 

Ta M of the 

where M' is so chosen that eMs” differs “little” from eUi,M\ since we intend 

to give only the idea of Vinogradov’s method, and not a proof of the 

Goldbach-Vinogradov theorem, we will not state precisely what we mean 

* If two such intervals surrounding the points atlq, and a,/q, intersect, then at a 
common point we will have the equation 

— + — . where I 6, | < 1, 1 8,1 < 1, 
It T 

a\Qt ~ aiQ\ _ 8i — 

QiQt r 

But the absolute value of the left side of this last equation is not less than I/?,?,, i.e., 
is greater than 1/A*, and the right side is not greater than 2/t, i.e., is less than 2Ji/N. 
So if this last equation were true, it would imply the inequality 1 /A* < 2h/N which 
contradicts the choice of h. 

fi + fi 
h r 
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by the expression “differs little”; in his proof Vinogradov deals with 

rigorously defined inequalities, involving a great deal of calculation. Thus 

V e*'"*'*'* = Ta„M, (42) 
M' 

where the symbol means that the first of the three expressions on the 

last relation differs “little” from the second. 

We further break up each of the sums 

= X eiwi{a'Q)V (43) 

into sums Ta,„ M.t, taken over all primes p, satisfying the relation 

M ^ pi < M' and belonging to arithmetic progressions qx -f /, where / 

takes on all values from 0 to q — 1 which are relatively prime to q. But 

gtnUa/Qtpl _ gtlx+UHa/M _ 

and thus 
T„tJn = ■ v{M, M\ I), (44) 

where tt(M,M',I) is the number of primes satisfying the conditions 

M < p < M' and belonging to the arithmetic progression qx /. In the 

development of formula (14) for the number n{x) of primes not exceeding 

x, it was established that M.M, M', /), for values of q which are “small” 

in comparison with the difference M' — M, differs little from 

1/^0?) dx/ln x, where is Euler's function. This is a number-theoretic 

function (i.e., a function defined for natural numbers q) representing the 

number of positive integers not exceeding q and relatively prime to q. 

From (44) we may thus derive 

1 a/Q.M'l 
einUa/v)l (45) 

In the expression on the right side of (45), only the first factor depends on 

/, i.e., on the choice of the arithmetic progression qx + / (we now consider 

q as fixed). After summing on /, we obtain 

1 dx v 

and further, from (42), 

<Kq) 
r*L. y 

■*» ln * I 

g2nHa/Q)l (46) 
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where 

~UiMx 
f* dx c"- emxx , 
-j--dx, 

Ju in x In at 

which allows us to replace (46) by the relation 

rM' ei’iix i 

Tz.m « f -dx • --- V ***«•/»«. 
J A# In JC <K<I) T 

After summing on M it is established that 

rM’ s,2frizz 

(47) 

T, 
In x 

dx ..J. - y 
m 

gMia/qM' 

The sum 
gUUa/Dl, 

(48) 

occuring on the right side of (48), with the summation taken over natural 

numbers / not exceeding q and relatively prime to q may be expressed as a 

number-theoretic function n(q) defined in the following manner: n(q) = 0 

if q is divisible by the square of an integer greater than one; /x(l) = 1 

and /a(^) = (— l)n if q = plpi — p« where px,Pt,—,Pn are distinct 

primes. Thus, for relatively prime a and q 

(49) 

Thus equation (48) may be written in the form 

<Hq) In* 

From the fact n\q) = n(q) we have 

T3 ^ 
M?) I (N elnitx , \* an pzfiizz 

(m? 

and from the definition of lx(N) 

li(N)= XXf T*e-***d*, , _ J n In-Mr 

(50) 

(51) 
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where for a given q the summation is taken over all nonnegative a less 

than q. Since a = a/q = z, we then have, as a result of (50), 

'.<*> - 2 2 C (/," TTF *)’ 
,1/x . ,N gtaizx ,3 

lss«<A 

We introduce the notation 

(52) 

J/t , tN p-lvitz ,3 

(I, ‘53> 
From relation (52) it follows that 

AM * R(N) 5) 2 e-t’,'a",)N- (54) 
«<«<» 

Here we must draw attention to the fact that R(N) is an analytic expression, 

which can therefore be calculated approximately; in fact, it runs out that 

R(N) t* 
N* 

2(ln N)a ' 
(55) 

The expression occuring as a factor of R(N) on the right side of (54) differs 

“little” from the sum of the infinite series 

S(N) = Jf IMF ? (56> 
so that, from (54) and (55), it can be established that 

sm- 
(57) 

or, more precisely. 

(58) 

where 

lim y,(<V) = 0. 
/v-*cc 

(59) 

We note that number-theoretic expression S(N) may be written in the 

form 

(60) 
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where Cis a constant, the multiplication is extended over all prime divisors 

of the number N, and, as the computations show, 

S(N) > 0.6. (61) 

Estimate of the integral on the complementary intervals. We turn now 

to an estimate of the sum /2 of the integrals on the complementary intervals. 

Since the modulus of the integral does not exceed the integral of the 

modulus of the function being integrated, and since | e| = 1 for 

real aN, wc have 

I /, I < max | r. | • I Tx I2 doc, (62) 

where max | 7"a | represents the largest value of | Tx | for a belonging to 

the complementary intervals (we have strengthened the inequality by taking 

as the factor of max | Ta | the integral extended over the whole interval 

— (I/t) < 1 — 1/t). 

But the square of the modulus of a complex number is equal to the 

product of the number with its complex conjugate, so that 

I r. i* - r. • T., 

where from (36) we have 

T- = 2. 
P<1V 

£-2 Wap 

since e-2*'**’ = cos 2nccp — / sin 2nap. Thus, inequality (62) may be 

rewritten in the form 

I /, | < max| Ta| • f‘ ,/r V e2"*’ V e~™*>idoc 
J _1/t p,^N 

or in the form 

11, | < max | r« | • 2 2 da■ (63> 
-*/' PUN p,^N 

But the integral in the inequality (63), from what was said at the beginning 

of the present section, represents the number of U of solutions in primes 

p, px, not exceeding N, of the equation p — px = 0, or simply the number 

of primes not exceeding N, i.e., n(N). From the result (12) of CebySev we 

have 

N 

In N ’ 
n(N) < B ■ 
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where B is a constant. In this manner 

!/.!<*■ 
N 

In N 
■ max | ra |, (64) 

where, to repeat, max | Tz | represents the largest value of | 7^ | on the 

complementary intervals. From (58) and (59) it follows that in order to 

complete the proof of the Goldbach-Vinogradov theorem, we must now 

show that max | Ta | has order less than yV/(ln /V)2; however, the establish¬ 

ment of this fact presents the greatest difficulty and constitutes the essential 

part of the whole proof of the theorem. 

Every a belonging to a complementary interval can be represented in the 

form a = a/q + z, where h < q < r and | z | < l/qr. The problem thus 

consists of estimating the modulus of the trigonometric sum 

7^= V etnUa/Q+t)v 

under the given conditions. Vinogradov established, in particular, that 

lim —-T7—= 0 ; (65) 
W-«o /V 

(In N)3 

here he made use of a very important identity which he discovered for the 

function n(n) discussed previously. 

Unfortunately, it is not possible here to give a proof of equation (65); 

the interested reader is referred to Chapter X in Vinogradov’s book 

“Methods of trigonometric sums in the theory of numbers.” 

From (65) and (64), as we noted, it follows that 

In this manner, from (40), (58), and (59) we have 

where 

/(/V) = 
N* 

2(ln N)3 
[S(N) + y(A0], 

lim y(N) = 0, 
N-*co 

(66) 

and S(N) has the value (60), so that, from (61), S(N) > 0.6. This completes 

the proof of the theorem. 
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§5. Decomposition of Integers into the Sum of Two Squares; 

Complex Integers 

The importance of the study of prime numbers is chiefly because of the 

central role they play in most of the laws of number theory: It frequently 

happens that questions which at first sight seem far removed from divi¬ 

sibility are nevertheless shown by more careful consideration to be inti¬ 

mately connected with the theory of prime numbers. We illustrate this 

statement by the following example. 

One of the problems of number theory consists of finding those natural 

numbers that can be decomposed into the sum of the squares of two 

integers (not necessarily different from zero). 

The rule for the sequence of numbers that are the sum of two squares 

is not immediately clear. From I to 50, for example, it consists of the 

numbers 1, 2, 4, 5, 8, 9, 10, 13, 16, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 

41, 45, 49, 50 a sequence which seems quite erratic. The 17th century 

French mathematician Fermat noticed that here everything depends 

on how the number can be represented as the product of primes, i.e., the 

question is inherently related to the theory of prime numbers. 

Prime numbers, other than p = 2, are odd, so that division by 4 gives 

a remainder equal to 1 (for a prime number of the form 4n + I) or to 

3 (for a prime number of the form 4n + 3). 

We will consider the question of expressing a given number as the sum 

of two squares under the following three headings. 

1. A prime number pis the sum of two squares if and only if p = 4 n + 1. 

The proof of the fact that a number of the form 4n + 3 cannot be 

expressed as the sum of two squares is almost obvious: The sum of 

the squares of two even numbers is divisible by 4, the sum of the square 

of two odd numbers gives a remainder of 2 when divided by 4, and the 

sum of the squares of an even and an odd number, when divided by 4, 

gives a remainder of 1. 

Let us now prove a preliminary theorem, namely that if p is a prime, 

then (p — 1)! + 1 is divisible by p. The numbers not divisible by p, when 

divided by p give the remainder 1, 2, 3, •••, p — 1. We choose an integer r, 

1 </•</>— 1 and multiply r by I, 2, •••, p — 1; when we divide the 

products so constructed by p we obtain, as is not difficult to prove, all 

these same remainders, but in general in a different order. In particular, 

among these remainders will be the number I, that is to say, for every r 

one can find an r, such that r • rl = 1 + kp. We note that r = r, only 

if r = 1 or r = p — 1. For if r2 = 1 + kp, then (/• + 1) (r — 1) is divisible 

by p\ but for numbers 1 < r ^p — 1 this is possible only for r = 1 and 
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r — p — 1. Let us find the remainders on dividing (p — 1)! = 1-2 

•••(/>— 1) by p. In this product, for every factor r, except 1 andp — 1, 

there occurs a corresponding r,, distinct from r, such that r ■ r, gives the 

remainder 1. Thus (p — I)! will give a remainder dividing by p which is 

the same as if only the two factors 1 and p — 1 were present, i.e., it gives 

the remainder p — 1. Thus, (p — I)! + 1 is divisible by p. 

Now let p = An + 1. Further, we write 

(P- D! + l = |l -2-^J ■ jjp-^-) - (p-2)(p-l)j + 1. 

The second expression in braces, when divided by p, will leave the 

remainder (— 1)*»-*/* [(p — l)/2]!. But (p — l)/2 = 2n is an even 

number, so that in this case [(/> — l)/2]!* + I is also divisible by p. We 

denote by A the remainder on dividing [(p — 1)/2]1 by p. It is obvious that 

A1 -F 1 is also divisible by p. 

We consider the expression x — Ay, in which x and y range inde¬ 

pendently over the number 0, I, •••, [Vp]\ (here [x] denotes the largest 

interger not exceeding x). We thus obtain ([y/p] + 1)* ^ p + 1 numerical 

values for x — Ay, which may be distinct or may in some cases coincide. 

Since the various remainders on dividing by p can only be p(0, 1, 2, •••, 

p — 1), while we here have at least p I values for x — Ay, there must 

exist two distinct pairs (x,, y,) and (xt, yj such that x, — Ay, and 

x2 — Ayt leave the same remainder on dividing by p; i.e., 

(x, — x2) — A(y, — y,) is divisible by p. We set x0 = x, — x2, 

y0 = y\ — y% • Obviously, | x0 | < y/p, \ y0 \ < y/p. Since A2 + 1 is 

divisible by p, it follows that )%(A2 + I) = (Ay0)* + is divisible by p; 

but since x„ — Ay0 is divisible by p, the number xj — (Ay0)2 = (x0 — Ay„) 

(x0 + Ay0) is divisible by p. Thus the quantity xj + , which is equal 

to (4 ~ ('O'o)* + (^To)2 + To). is divisible by p. But | x0 | < y/p, 

I To I < Vp- Hence ^ + To = 0 or *o + To = P- ^^e first is impossible, 
since the pairs (x, ,y,) and (x*,t») were distinct. Thus a prime number 

of the form An + 1 is representable as the sum of two squares. 

2. We turn to the decomposition of an arbitrary integer into the sum 

of two squares. It is easy to establish the identity 

(a2 + b2) (c2 + d2) = (ac — bd)2 + (ad + be)2. 

This identity shows that the product of two integers that are the sum of 

two squares is again the sum of two squares. Hence the product of any 

powers of prime numbers of the form An + 1 (or which are equal to 2) is 

the sum of two squares. Since multiplying the sum of two squares by a 
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square gives the sum of two squares, any number in which the prime 

factors of the An + 3 occur in even powers is the sum of two squares. 

3. We now show that if a prime number of the form An + 3 enters 

into a number in an odd power, the number cannot be expressed as the 

sum of two squares. The original question will then be completely settled. 

We will consider complex numbers of the form a + bi, where a and b 

are ordinary integers. Such a complex number will be called a complex 

integer. If an integer N is the sum of two squares N = a2 + b2, then 

N = (a + bi) (a — bi) = a • <5 (where a denotes the complex conjugate 

of the number a), i.e., N is factored in the domain of complex integers 

into complex conjugate factors. 

In this domain of complex integers, we may construct a theory of 

divisibility completely analogous to the theory of divisibility in the domain 

of ordinary integers. We will say that the complex integer a is divisible by 

the complex integer /3, if a/j9 is again a complex integer. There exist only 

four complex integers a which divide I, namely 1,-1, /', and —We will 

say that a complex integer a is a prime, if it does not have any divisors 

other than 1,-1, i, —i, a, —a, ai, —a/'. But now the problem solved under 

the first heading above will have a different meaning; it will now turn out 

that numbers of the form An + I (or equal to 2) which in the previous case 

were prime will cease to be prime in the domain of complex integers, while 

it is easy to prove that primes of the form An -f 3 remain prime. 

For, if p = afi, then p = ofiand p2 = aaj8/J. But aa and /?£are ordinary 

positive integers; and p aa, since prime numbers of the form An + 3 are 

not the sum of two squares. This means that aa = 1; thus a can be 

only ±1 or ±/', so that p has no divisors other than the obvious ones. 

For complex integers the theorem on the unique decomposition into 

prime factors still holds. Uniqueness here means, of course, that the order 

of multiplication is ignored and also all factors of the form 1, —1, i, —i. 

Let N be the sum of two squares, N = aa. Let p be a prime number of 

the form An 4- 3. Let us calculate what power of p appears in the number 

N. From the fact that p remains a prime in the complex domain, it is 

sufficient to calculate what power of p appears in a and in a. But these 

powers are equal, so that p necessarily appears in N to an even power, 

which proves the proposition. 

The discovery that a rich theory of divisibility is possible elsewhere than 

in the domain of whole rational numbers greatly extended the field of 

vision of 19th century mathematicians. The development of these ideas 

called for the creation of new general concepts in mathematics, such as, 

for example, rings and ideals. The significance of these concepts at the 

present time has far outgrown the frame of number theory. 
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CHAPTER XI 
THE THEORY 

OF PROBABILITY 

§1. The Laws of Probability 

The simplest laws of natural science are those that state the conditions 

under which some event of interest to us will either certainly occur or 

certainly not occur; i.e., these conditions may be expressed in one of the 

following two forms: 

1. If a complex (i.e., a set or collection) of conditions S is realized, then 

event A certainly occurs; 

2. If a complex of conditions 5 is realized, then event A cannot occur. 

In the first case the event A, with respect to the complex of conditions 

S, is called a “certain” or “necessary” event, and in the second an 

“impossible” event. For example, under atmospheric pressure and at 

temperature t between 0° and 100° (the complex of conditions S) water 

necessarily occurs in the liquid state (the event At is certain) and cannot 

occur in a gaseous or solid state (events A2 and A3 are impossible). 

An event A, which under a complex of conditions 5 sometimes occurs 

and sometimes does not occur, is called random with respect to the 

complex of conditions. This raises the question: Does the randomness of 

the event A demonstrate the absence of any law connecting the complex 

of conditions S and the event A ? For example, let it be established that 

lamps of a specific type, manufactured in a certain factory (condition 5) 

sometimes continue to burn more than 2,000 hours (event A), but some¬ 

times burn out and become useless before the expiration of that time. 

May it not still be possible that the results of experiments to see whether 

a given lamp will or will not bum for 2,000 hours will serve to evaluate 

229 
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the production of the factory? Or should we restrict ourselves to indicating 

only the period (say 500 hours) for which in practice all lamps work 

without fail, and the period (say 10,000 hours) after which in practice all 

lamps do not work? It is clear that to describe the working life of a lamp 

by an inequality of the form 500 < T < 10,000 is of little help to the 

consumer. He will receive much more valuable information if we tell him 

that in approximately 80% of the cases the lamps work for no less than 

2,000 hours. A still more complete evaluation of the quality of the lamps 

will consist of showing 

for any T the percent 

v(T) of the lamps which 

work for no less than T 
hours, say in the form of 

the graph in figure 1. 

The curve v(7) is found 

in practice by testing with 

a sufficiently large sample 

(100-200) of the lamps. 

Of course, the curve 

found in such a manner is 

of real value only in those 

where it truly represents an actual law governing not only the given sample 

but all the lamps manufactured with a given quality of material and under 

given technological conditions; that is, only if the same experiments 

conducted with another sample will give approximately the same results 

(i.e., the new curve v(T) will differ little from the curve derived from 

the first sample). In other words, the statistical law expressed by the curves 

v(T) for the various samples is only a reflection of the law of probability 

connecting the useful life of a lamp with the materials and the technological 

conditions of its manufacture. 

This law of probability is given by a function P(T), where P(T) is the 

probability that a single lamp (made under the given conditions) will 

burn no less than T hours. 

The assertion that the event A occurs under conditions S with a definite 

probability 

Fig. 1. 

P(A/S) = p 

amounts to saying that in a sufficiently long series of tests (i.e., realizations 

of the complex of conditions S) the frequencies 
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of the occurrence of the event A (where nr is the number of tests in the rth 

series, and pr is the number of tests of this series for which event A occurs) 

will be approximately identical with one another and will be close 

to p. 
The assumption of the existence of a constant p = P(A/S) (objectively 

determined by the connection between the complex of conditions S and 

the event A) such that the frequencies v get closer “generally speaking” 

to p as the number of tests increases, is well borne out in practice for a 

wide class of events. Events of this kind are usuaully called random or 

stochastic. 
This, example belongs to the laws of probability for mass production. 

The reality of such laws cannot be doubted, and they form the basis of 

important practical applications in statistical quality control. Of a similar 

kind are the laws of probability for the scattering of missiles, which are 

basic in the theory of gunfire. Since this is historically one of the earliest 

applications of the theory of probability to technical problems, we will 

return below to some simple problems in the theory of gunfire. 

What was said above the “closeness” of the frequency v to the prob¬ 

ability p for a large number n of tests is somewhat vague; we said nothing 

about how small the difference v — p may be for any n. The degree of 

closeness of v to p is estimated in §3. It is interesting to note that a certain 

indefiniteness in this question is quite unavoidable. The very statement 

itself that v and p are close to each other has only a probabilistic character, 

as becomes clear if we try to make the whole situation precise. 

§2. The Axioms and Basic Formulas of the Elementary Theory 

of Probability 

Since it cannot be doubted that statistical laws are of great importance, 

we turn to the question of methods of studying them. First of all one thinks 

of the possibility of proceeding in a purely empirical way. Since a law of 

probability exhibits itself only in mass processes, it is natural to imagine 

that in order to discover the law we must conduct a mass experiment. 

Such an idea, however, is only partly right. As soon as we have 

established certain laws of probability by experiment, we may proceed to 

deduce from them new laws of probability by logical means or by computa¬ 

tion, under certain general assumptions. Before showing how this is done, 

we must enumerate certain basic definitions and formulas of the theory 

of probability. 

From the representation of probability as the standard value of the 

frequency v — m/n, where 0 < m < n, and thus 0 ^ »■ sg 1, it follows that 
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the probability P(/4) of any event A must be assumed to lie between zero 

and one* 

0 < PM) < 1. 

Two events are said to be mutually exclusive if they cannot both occur 

(under the complex of conditions S). For example, in throwing a die, the 

the occurrence of an even number of spots and of a three are mutually 

exclusive. An event A is called the union of events A, and A2 if it consists 

of the occurrence of at least one of the events A, , A2. For example, in 

throwing a die, the event A, consisting of rolling 1, 2, or 3, is the union 

of the events A, and A2, where At consists of rolling 1 or 2 and A2 consists 

of rolling 2 or 3. It is easy to see that for the number of occurrences w,, 

m2, and m of two mutually exclusive events At and A2 and their union 

A = A, u A2, we have the equation m = m, -f m2, or for the corre¬ 

sponding frequencies v = vx + vt. 
This leads naturally to the following axiom for the addition of probabili¬ 

ties: 

PM. ^ At) = P(At) + PM,), (2) 

if the events A, and A2 are mutually exclusive and A, u At denotes their 

union. 

Further, for an event U which is certain, we naturally take 

P (U) = I- (3) 

The whole mathematical theory of probability is constructed on the 

basis of simple axioms of the type (I), (2), and (3). From the point of 

view of pure mathematics, probability is a numerical function of “events,” 

with a number of properties determined by axioms. The properties of 

probability, expressed by formulas (1), (2), and (3), serve as a sufficient 

basis for the construction of what is called the elementary theory of prob¬ 

ability, if we do not insist on including in the axiomatization the concepts 

of an event itself, the union of events, and their intersection, as defined 

later. For the beginner it is more useful to confine himself to an intuitive 

understanding of the terms “event” and “probability,” but to realize 

that although the meaning of these terms in practical life cannot be 

completely formalized, still this fact does not affect the complete formal 

precision of an axiomatized, purely mathematical presentation of the 

theory of probability. 

The union of any given number of events At, A2, •••, A, is defined as 

the event A consisting of the occurrence of at least one of these events. 

* For brevity we now change P(A/S) to P(A). 
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From the axiom of addition, we easily obtain for any number of pairwise 

mutually exclusive events Alt Ait A, and their union A, 

PM) = PM,) + PM*) + - + PM.) 

(the so-called theorem of the addition of probabilities). 
If the union of these events is an event that is certain (i.e., under the 

complex of conditions 5 one of the events Ak must occur), then 

P Mi) + PMs) + - + PM.) = 1. 

In this case the system of events A,, •••, A, is called a complete system of 

events. 

We now consider two events A, and B, which, generally speaking, are 

not mutually exclusive. The event C is the intersection of the events A and 

B, written C = AB, if the event C consists of the occurrence of both 

A and B* 
For example, if the event A consists of obtaining an even number in the 

throw of a die and B consists of obtaining a multiple of three, then the 

event C consists of obtaining a six. 

In a large number n of repeated trials, let the event A occur m times and 

the event B occur / times, in k of which B occurs together with the event A. 
The quotient k/m is called the conditional frequency of the event B under 

the condition A. The frequencies k/m, m/n, and k/n are connected by the 

formula 

k km 
m n' n 

which naturally gives rise to the following definition: 

The conditional probability P(B/A) of the event B under the condition 

A is the quotient 

P{B/A) = 
P(AB) 

PM) ' 

Here it is assumed, of course, that P(A) ^ 0. 

If the events A and B are in no way essentially connected with each 

other, then it is natural to assume that event B will not appear more often, 

or less often, when A has occurred than when A has not occurred, i.e., 

that approximately k/m ~ l/n or 

k km I m 
— =->>*/-. 
n m n n n 

* Similarly, the intersection C of any number of events A,, A,, •••, A. consists 
of the occurrence of all the given events. 
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In this last approximate equation m/n = vA is the frequency of the event A, 
and l/n = vB is the frequency of the event B and finally k/n = vAB is the 

frequency of the intersection of the events A and B. 
We see that these frequencies are connected by the relation 

VAB ~ VAVB ■ 

For the probabilities of the events A, B and AB, it is therefore natural to 

accept the corresponding exact equation 

P(AB) = P(>1) • P(B). (4) 

Equation (4) serves to define the independence of two events A and B. 
Similarly, we may define the independence of any number of events. 

Also, we may give a definition of the independence of any number of 

experiments, which means, roughly speaking, that the outcome of any 

part of the experiments do not depend on the outcome of the rest.* 

We now compute the probability Pk of precisely k occurrences of a 

certain event A in n independent tests, in each one of which the probability 

p of the occurrence of this event is the same. We denote by A the event 

that event A does not occur. It is obvious that 

P(A) = I — P(/4) = I — />. 

From the definition of the independence of experiments it is easy to 

see that the probability of any specific sequence consisting of k occurrences 

of A and n — k nonoccurrences of A is equal to 

pk(\ -pY-K (5) 

Thus, for example, for n = 5 and k = 2 the probability of getting the 

sequence AAaAA will be p{\ — p)p( 1 — p) (1 — p) = p\\ — p)3. 
By the theorem on the addition of probabilities, Pk will be equal to the 

sum of the probabilities of all sequences with k occurrences and n — k 
nonoccurrences of the event A, i.e., Pk will be equal from (5) to the product 

of the number of such sequences by pk( 1 — p)n~k. The number of such 

* A more exact meaning of Independent experiments is the following. We divide the 
n experiments in any way into two groups and let the event A consist of the result that 
all the experiments of the first group have certain preassigned outcomes, and the event 
B that the experiments of the second group have preassigned outcomes. The experiments 
are called independent (as a collection) if for arbitrary decomposition into two groups 
and arbitrarily preassigned outcomes the events A and B are independent in the sense 
of (4). 

We will return in §4 to a consideration of the objective meaning in the actual world 
of the independence of events. 
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sequences is obviously equal to the number of combinations of n things 

taken k at a time, since the k positive outcomes may occupy any k places 

in the sequence of n trials. 

Finally we get 

Pk = CM 1 - />)-* (k = 0, 1,2, n) (6) 

(which is called a binomial distribution). 

In order to see how the definitions and formulas are applied, we consider 

an example that arises in the theory of gunfire. 

Let five hits be sufficient for the destruction of the target. What interests 

us is the question whether we have the right to assume that 40 shots will 

insure the necessary five hits. A purely empirical solution of the problem 

would proceed as follows. For given dimensions of the target and for a 

given range, we carry out a large number (say 200) of firings, each con¬ 

sisting of 40 shots, and we determine how many of these firings produce 

at least five hits. If this result is achieved, for example, by 195 firings out 

of the 200, then the probability P is approximately equal to 

p-m~ om- 

If we proceed in this purely empirical way, we will use up 8,000 shells 

to solve a simple special problem. In practice, of course, no one proceeds 

in such a way. Instead, we begin the investigation by assuming that the 

scattering of the shells for a given range is independent of the size of the 

target. It turns out that the longitudinal and lateral deviations, from the 

mean point of landing of the shells, follow a law with respect to the 

frequency of deviations of various sizes that is illustrated in figure 2. 

2% 7% 16%, 25% 25% !6% 7% 2% 

-4B -3B -2B -BO B 2B 3B 4B 

Fig. 2. 

The letter B here denotes what is called the probable deviation. The 

probable deviation, generally speaking, is different for longitudinal and 

for lateral deviations and increases with increasing range. The probable 

deviations for different ranges for each type of gun and of shell are found 

empirically in firing practice on an artillery range. But the subsequent 

solution of all possible special problems of the kind described is carried 

out by calculations only. 

For simplicity, we assume that the target has the form of a rectangle, 
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one side of which is directed along the line of fire and has a length of two 

probable longitudinal deviations, while the other side is perpendicular to 

the line of fire and is equal in length to two probable lateral deviations. 

We assume further that the range has already been well established, so 

that the mean trajectory of the shells passes through its center (figure 3). 

We also assume that the lateral and longitudinal deviations are inde¬ 

pendent.* Then for a given shell to fall on the target, it is necessary and 

sufficient that its longitudinal and lateral deviations do not exceed the 

corresponding probable deviations. From figure 2 each of these events 

will be observed for about 50% of the shells fired, i.e., with probability £. 

The intersection of the two events will occur for about 25% of the shells 

fired; i.e., the probability that a specific shell will hit the target will be 

equal to 

I I 1 
p ~ 2'2 “ 4’ 

and the probability of a miss for a single shell will be 

Assuming that hits by the individual shells represent independent 

events, and applying the binomial formula (6), we find that the probability 

for getting exactly k hits in 40 shots will be 

Pk = C*J>y-* = 
40 • 39 - (39 - k) 

1-2 -k (i)‘© 3\«-* 

What concerns us is the probability of getting no less than five hits, and 

this is now expressed by the formula 

*0 

p = '2,pf 
k-S 

This assumption of independence is borne out by experience. 
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But it is simpler to compute this probability from the formula P = 1 — Q, 
where 

Q = ’£p* 
i-0 

is the probability of getting less than five hits. 

We may calculate that 

P°=(i) ~0 00001' 

/3\3* I 
/>1 = 40gj 0.00013, 

^.-4o”33v37r(y~°°"3' 
so that 

Q = 0.016, P = 0.984. 

The probability P so obtained is somewhat closer to certainty than is 

usually taken to be sufficient in the theory of gunfire. Most often it is 

considered permissible to determine the number of shells needed to 

guarantee the result with probability 0.95. 

The previous example is somewhat schematized, but it shows in sufficient 

detail the practical importance of probabilitycalculations. Afterestablishing 

by experiment the dependence of the probable deviations on the range 

(for which we did not need to fire a large number of shells), we were then 

able to obtain, by simple calculation, the answers to questions of the most 

diverse kind. The situation is the same in all other domains where the 

collective influence of a large number of random factors leads to a statistical 

law. Direct examination of the mass of observations makes clear only the 

the very simplest statistical laws; it uncovers only a few of the basic prob¬ 

abilities involved. But then, by means of the laws of the theory of probabil¬ 

ity, we use these simplest probabilities to compute the probabilities of 

more complicated occurrences and deduce the statistical laws that govern 

them 

Sometimes we succeed in completely avoiding massive statistical 

material, since the probabilities may be defined by sufficiently convincing 
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considerations of symmetry. For example, the traditional conclusion that 

a die, i.e., a cube made of a homogeneous material will fall, when thrown 

to a sufficient height, with equal probability on each of its faces was 

reached long before there was any systematic accumulation of data to 

verify it by observation. Systematic experiments of this kind have been 

carried out in the last three centuries, chiefly by authors of textbooks in 

the theory of probability, at a time when the theory of probability was 

already a well-developed science. The results of these experiments were 

satisfactory, but the question of extending them to analogous cases 

scarcely arouses interest. For example, as far as we know, no one has 

carried out sufficiently extensive experiments in tossing homogeneous dice 

with twelve sides. But there is no doubt that if we were to make 

12,000 such tosses, the twelve-sided die would show each of its faces 

approximately a thousand times. 

The basic probabilities derived from arguments of symmetry or homo¬ 

geneity also play a large role in many serious scientific problems, for 

example in all problems of collision or near approach of molecules in 

random motion in a gas; another case where the successes have been 

equally great is the motion of stars in a galaxy. Of course, in these more 

delicate cases we prefer to check our theoretical assumptionsby comparison 

with observation or experiment. 

§3. The Law of Large Numbers and Limit Theorems 

It is completely natural to wish for greater quantitative precision in the 

proposition that in a “long” series of tests the frequency of an occurrence 

comes “close” to its probability. But here we must form a clear notion 

of the delicate nature of the problem. In the most typical cases in the 

theory of probability, the situation is such that in an arbitrarily long series 

of tests it remains theoretically possible that we may obtain either of the 

two extremes for the value of the frequency 

*=n-=\ and ^ = - = 0. 
n n n n 

Thus, whatever may be the number of tests n, it is impossible to assert 

with complete certainty that we will have, say, the inequality 

For example, if the event A is the rolling of a six with a die, then in n 
trials, the probability that we will turn up a six on all n trials is (£)" > 0, 
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in other words, with probability (-£)" we will obtain a frequency of rolling 

a six which is equal to one; and with probability (1 — ^)n > 0 a six will 

not come up at all, i.e., the frequency of rolling a six will be equal to zero. 
In all similar problems any nontrivial estimate of the closeness of the 

frequency to the probability cannot be made with complete certainty, 

but only with some probability less than one. For example, it may be 

shown that in independent tests,* with constant probability p of the 

occurrence of an event in each test the inequality 

| <0-02 (7) 

for the frequency p\n will be satisfied, for n = 10,000 (and any p), with 

probability 

P > 0.9999. (8) 

Here we wish first of all to emphasize that in this formulation the quanti¬ 

tative estimate of the closeness of the frequency p/n to the probability p 
involves the introduction of a new probability P. 

The practical meaning of the estimate (8) is this: If we carry out Assets 

of n tests each, and count the M sets in which inequality (7) is satisfied, 

then for sufficiently large N we will have approximately 

^ P > 0.9999. (9) 

But if we wish to define the relation (9) more precisely, either with 

respect to the degree of closeness of M/N to P, or with respect to the 

confidence with which we may assert that (9) will be verified, then we must 

have recourse to general considerations of the kind introduced previously 

in discussing what is meant by the closeness of pfn and p. Such considera¬ 

tions may be repeated as often as we like, but it is clear that this procedure 

will never allow us to be free of the necessity, at the last stage, of referring 

to probabilities in the primitive imprecise sense of this term. 

It would be quite wrong to think that difficulties of this kind are peculiar 

in some way to the theory of probability. In a mathematical investigation 

of actual events, we always make a model of them. The discrepancies 

between the actual course of events and the theoretical model can, in its 

turn, be made the subject of mathematical investigation. But for these 

discrepancies we must construct a model that we will use without formal 

mathematical analysis of the discrepancies which again would arise in it 

in actual experiment. 

* The proof of the estimate (8) is discussed later in this section. 
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We note, moreover, that in an actual application of the estimate* 

P <0.02 > 0.9999 (10) 

to one series of n tests we are already depending on certain considerations 

of symmetry: inequality (10) shows that for a very large number N of 

series of tests, relation (7) will be satisfied in no less than 99.99% of the 

cases; now it is natural to expect with great confidence that inequality 

(7) will apply in particular to that one of the sequence of n tests which is 

of interest to us, but we may expect this only if we have some reason for 

assuming that the position of this sequence among the others is a regular 

one, that is, that it has no special features. 

The probabilities that we may decide to neglect are different in different 

practical situations. We noted earlier that our preliminary calculations for 

the expenditure of shells necessary to produce a given result meet the 

standard that the problem is to be solved with probability 0.95, i.e., that 

the neglected probabilities do not exceed 0.05. This standard is explained 

by the fact that if we were to make calculations neglecting a probability 

of only 0.01, let us say, we would necessarily require a much greater 

expenditure of shells, so that in practice we would conclude that the 

task could not be carried out in the time at our disposal, or with the 

given supply of shells. 

In scientific investigations also, we are sometimes restricted to statistical 

methods calculated on the basis of neglecting probabilities of 0.05, 

although this practice should be adopted only in cases where the accumul¬ 

ation of more extensive data is very difficult. As an example of such a 

method let us consider the following problem. We assume that under 

specific conditions the customary medicine for treating a certain illness 

gives positive results 50% of the time, i.e., with probability 0.5. A new 

preparation is proposed, and to test its advantages we plan to use it in 

ten cases, chosen without bias from among the patients suffering from 

the illness. Here we agree that the advantage of the new preparation will 

be considered as proved if it gives a positive result in no less than eight 

cases out of the ten. It is easy to calculate that such a procedure involves 

the neglect of probabilities of the order of 0.05 of getting a wrong result, 

i.e., of indicating an advantage for the new preparation when in fact it is 

only equally effective or even worse than the old. For if in each of the ten 

experiments, the probability of a positive outcome is equal to p, then the 

* This is the accepted notation for estimate (8) of the probability of inequality (7). 
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probability of obtaining in ten experiments 10, 9, or 8 positive outcomes, 

is equal respectively to 

Pio = P'°, P, = 10p9(l - p), Pg = 45p8( 1 - pf. 

For the case p = \ the sum of these is 

P=P.. + ^. + P. = 1|j~0.05. 

In this way, under the assumption that in fact the new preparation is 

exactly as effective as the old, we risk with probability of order 0.05 the 

error of finding that the new preparation is better than the old. To reduce 

this probability to about 001, without increasing the number of experi¬ 

ments n = 10, we will need to agree that the advantage of the new prepara¬ 

tion is proved if it gives a positive result in no less than nine cases out of 

the ten. If this requirement seems to severe to the advocates of the new 

preparation, it will be necessary to make the number of experiments 

considerably larger than 10. For example, for n = 100, if we agree that 

the advantage of the new preparation is proved for p > 65, then the 

probability of error will only be P s% 0.0015. 

For serious scientific investigations a standard of 0.05 is clearly 

insufficient; but even in such academic and circumstantial matters as the 

treatment of astronomical observations, it is customary to neglect prob¬ 

abilities of error of 0.001 or 0.003. On the other hand, some of the scientific 

results based on the laws of probability are considerably more reliable 

even than that; i.e., they involve the neglect of smaller probabilities. We 

will return to this question later. 

In the previous examples, we have made use of particular cases of the 

binomial formula (6) 

Pm = 0«( 1 - pr¬ 

ior the probability of getting exactly m positive results in n independent 

trials, in each one of which a positive outcome has probability p. Let us 

consider, by means of this formula, the question raised at the beginning 

of this section concerning the probability 

P = (ID 

where p is the actual number of positive results.* Obviously, this prob- 

* Here h takes the values m = 0,1, —, n, with probability P„; i.e., 

PGi = m) = Pm. 
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ability may be written as the sum of those Pm for which m satisfies the 

inequality 

< «, (12) 

i.e., in the form 

(13) 

where m, is the smallest of the values of m satisfying inequality (12), and 

m2 is the largest. 

Formula (13) for fairly large n is hardly convenient for immediate 

calculation, a fact which explains the great importance of the asymptotic 

formula discovered by de Moivre for p — £ and by Laplace for general p. 
This formula allows us to find Pm very simply and to study its behavior 

for large n. The formula in question is 

p ,_, 1 f-(m-fip)*/inWI-p) ' 

V2nnp(\ — p) 
(14) 

If p is not too close to zero or one, it is sufficiently exact even for n of the 

order of 100. If we set 
m — nd 

Vnp(\ ~- p) 
05) 

then formula (14) becomes 

Pm ~ 

I 

V2nnp{\ — p) 
-«•/* . (16) 

From (13) and (16) one may derive an approximate representation of the 

probability (11) 

P-^ C e~"/*dt = F(T), (17) 
V27T J -T 

where 

r= eV *1 -p) • 
(18) 

The difference between the left and right sides of (17) for fixed p, different 

from zero or one, approaches zero uniformly with respect to c, as n-* oo. 

For the function F(T) detailed tables have been constructed. Here is a 

small excerpt from them 

T\ 1 | 2| 3 | 4 

F| 0.68269 | 0.95450 | 0.99730 | 0.99993' 
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For T -*• oo the values of the function F{T) converge to one. 
From formula (17) we derive an estimate of the probability 

P <0.02 

for n = 10,000. Since 

we have 

r = 

p * e | 

VR\ -p) ’ 

( 2 \ 
' Vp(! -p) ' 

Since the function F^T) is monotonic increasing with increasing T, it 
follows for an estimate of P from the following which is independent of 
p, we must take the smallest possible (for the various p) value of T. Such 
a smallest value occurs for p = £ and is equal to 4. Thus, approximately 

P^F(4) = 0.99993. (19) 

In equality (19) no account is taken of the error arising from the 
approximate character of formula (17). By estimating the error involved 
here, we may show that in any case P > 0.9999. 

In connection with this example of the application of formula (17), 
one should note that the estimates of the remainder term in formula (17) 
given in theoretical works on the theory of probability were for a long time 
unsatisfactory. Thus the applications of (17) and similar formulas to 
calculations based on small values of n, or with probabilities p very close 
to 0 or 1 (such probabilities are frequently of particular importance) were 
often based on experimental verification only of results of this kind for a 
restricted number of examples, and not on any valid estimates of the 
possible error. Also, it was shown by more detailed investigation that in 
many important practical cases the asymptotic formulas introduced 
previously require not only an estimate of the remainder term but also 
certain further refinements (without which the remainder term would be 
too large). In both directions the most complete results are due to S. N. 
Bernlteln. 

Relations (11), (17), and (18) may be rewritten in the form 

P P (20) 

For sufficiently large i the right side of formula (20), which does not 
contain n, is arbitrarily close to one, i.e., to the value of the probability 
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which gives complete certainty. We see, in this way, that, as a rule, the 

deviation of the frequency p./n from the probability p is of order 1 /y/h. 

Such a proportionality between the exactness of a law of probability and 

the square root of the number of observations is typical for many other 

questions. Sometimes it is even said in popular simplifications that “the 

law of the square root of n” is the basic law of the theory of probability. 

Complete precision concerning this idea was attained through the intro¬ 

duction and systematic use by the great Russian mathematician P. L. 

CebySev of the concepts of “mathematical expectation” and “variance” 

for sums and arithmetic means of “random variables.” 

A random variable is the name given to a quantity which under given 

conditions S may take various values with specific probabilities. For us it 

is sufficient to consider random variables that may take on only a finite 

number of different values. To give the probability distribution, as it is 

called, of such a random variable £, it is sufficient to state its possible 

values x,, xt, x„ and the probabilities 

P{ = P(f = xr). 

The sum of these probabilities for all possible values of the variable f is 

always equal to one: 

2) Pr = '• 
r-l 

The number investigated above of positive outcomes in n experiments 

may serve as an example of a random variable. 

The mathematical expectation of the variable £ is the expression. 

mt) = i/Prxr, 
r-l 

and the variance of £ is the mathematical expectation of the square of the 

deviation f — M(f), i.e., the expression 

D(£) = X PT[xr - M(f)]’. 
r-l 

The square root of the variance 

o£ = VD(|j 

is called the standard deviation (of the variable from its mathematical 

expectation M(£)). 
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At the basis of the simplest applications of variance and standard 
deviation lies the famous inequality of CebySev 

P{lf-M(0| </*«}> 1-1. (21) 

It shows that deviations of £ from M(f) significantly greater than a( are 

As for the sum of random variables 

f = + £<*> + - + £«"», 
their mathematical expectations always satisfy the equation 

M(f) = M(£">) + M(£<*>) 4- - + M(f<">). (22) 

But the analogous equation for the variance 

D(£) = D(f») + D(£<*>) + - + D(f<">) (23) 

is true only under certain restrictions. For the validity of equation (23) it is 

sufficient, for example, that the variables £“> and f1*' with different indices 

not be “correlated" with one another, i.e., that for /?£ j the equation* 

- M(£“>)] [{'» - Mtf'”)]} = 0 (24) 

be satisfied. 

In particular, equation (24) holds if the variables and are 

independent of each other.* Consequently, for mutually independent terms 

equation (23) always holds. For the arithmetic mean 

£ = i(£a'+ £'*’ + - + £'"’) n 

it follows from (23) that 

D(0 = -1 [D(£'») + D(|«*') + - + D(f'"')]. (25) 

* The correlation coefficient between the variables f1*' and is the expression 

A = - . 

o a 
£<<) (Ui 

If o{<0 > 0 and o{ul > 0, then condition (24) is equivalent to saying that R = 0. 
The correlation coefficient R characterizes the degree of dependence between random 

variables. | R | < 1 always, and R = ± I only for a linear relationship 

V = af + b (aj£ 0). 

For independent variables R = 0. 

t The independence of two random variables ( and tj, which may assume, respectively, 
the values xx, xt, —, xm and y,, y,, —, yn , is defined to mean that for any / and j 
the events A, = (( = *,} and B, = {ij = y,} are independent in the sense of the 
definition given in §2. 
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We now assume that for each of these terms the variance does not 

exceed a certain constant 

D(£,n) < a. 
Then from (25) 

C'1 
D( 

and from CebySev’s inequality for any t 

PjK-M(OI > 1 - —. (26) 

Inequality (26) expresses what is called the law of large numbers, in the 

form established by tebySev: If the variables are mutually independent 

and have bounded variance, then for increasing n the arithmetic mean 

£ will deviate more and more rarely from the mathematical expectation 

M(£). 
More precisely, the sequence of variables 

£<*», .... £00 ... 

is said to obey the law of large numbers if for the corresponding arithmetic 

means £ and for any constant t > 0 

P{ I £ - M(OI ^ *} - I (27) 
forn —► oo. 

In order to pass from inequality (26) to the limiting relation (27) it is 

sufficient to put 

A large number of investigations of A. A. Markov, S. N. BerSteln, 

A. Ja. HinCin, and others were devoted to the question of widening as 

far as possible the conditions under which the limit relation (27) is valid, 

i.e., the conditions for the validity of the law of large numbers. These 

investigations are of basic theoretical significance, but still more important 

is an exact study of the probability distribution for the variable £ — M(£). 

One of the greatest services rendered by the classical Russian school of 

mathematicians to the theory of probability is the establishment of the 

fact that under very wide conditions the equation 

< £ - M(£) < ttoc} ~ -L f'1 e-‘V* dt (28) 
v27T J I, 

is asymptotically valid (i.e., with greater and greater exactness as n 

increases beyond all bounds). 
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CebySev gave an almost complete proof of this formula for the case of 

independent and bounded terms. Markov closed a gap in CebySev’s 

argument and widened the conditions of applicability of formula (28). 

Still more general conditions were given by Ljapunov. The applicability 

of formula (28). Still more general conditions were given by Ljapunov. 

The applicability of formula (28) to the sum of mutually dependent 

terms was studied with particular completeness by S. N. BernSteln. 

Formula (28) embraces such a large number of particular cases that 

it has long been called the central limit theorem in the theory of probability. 

Even though it has been shown lately to be included in a series of more 

general laws its value can scarcely be overrated even at the present time. 

If the terms are independent and their variances are all the same, and 

are equal to 

D(£"') = a*. 

then it is convenient, using relation (25), to put formula (28) into the form 

<29> 

Let us show that relation (29) contains the solution of the problem, 

considered earlier, of evaluating the deviation of the frequency n/n from 

the probability p. For this we introduce the random variables f*1, defined 

as follows: 

tin _ lhe 'th test has a negative outcome, 

? (1, if the /th test has a positive outcome. 

It is easy to verify that then 

#* = P" + P» + - + P"», J n 

M(£">) = P> D(f *») = p( 1 - p), M(£) = p, 

and formula (29) gives 

which for fj = —/,/* = / leads again to formula (20). 

§4. Further Remarks on the Basic Concepts of the Theory of Probability 

In speaking of random events, which have the property that their 

frequencies tend to become stable, i.e., in a long sequence of experiments 
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repeated under fixed conditions, their frequencies are grouped around 

some standard level, called their probability P(4/S), we were guilty, in §1, 

of a certain vagueness in our formulations, in two respects. In the first 

place, we did not indicate how long the sequence of experiments nT must 

be in order to exhibit beyond all doubt the existence of the suppose 

stability; in other words, we did not say what deviations of the frequencies 

Hr/nr from one another or from their standard level p were allowable for 

sequences of trials n,, /!*,•••,#»* of given length. This inexactness in the 

first stage of formulating the concepts of a new science is unavoidable. 

It is no greater than the well-known vagueness surrounding the simplest 

geometric concepts of point and straight line and their physical meaning. 

This aspect of the matter was made clear in §3. 

More fundamental, however, is the second lack of clearness concealed in 

our formulations; it concerns the manner of forming the sequences of 

trials in which we are to examine the stability of the frequency of occur¬ 

rence of the event A. 

As stated earlier, we are led to statistical and probabilistic methods of 

investigation in those cases in which an exact specific prediction of the 

course of events is impossible. But if we wish to create in some artificial 

way a sequence of events that will be, as far as possible, purely random, 

then we must take special care that there shall be no methods available 

for determining in advance those cases in which A is likely to occur with 

more than normal frequency. 

Such precautions are taken, for example, in the organization of 

government lotteries. If in a given lottery there are to be M winning tickets 

in a drawing of N tickets, then the probability of winning for an individual 

ticket is equal to p = M/N. This means that in whatever manner we 

select, in advance of the drawing, a sufficiently large set of n tickets, we 

can be practically certain that the ratio p/n of the number p of winning 

tickets in the chosen set to the whole number n of tickets in this set will be 

close to p. For example, people who prefer tickets labeled with an even 

number will not have any systematic advantage over those who prefer 

tickets labeled with odd numbers, and in exactly the same way there 

will be no advantage in proceeding on the principle, say, that it is always 

better to buy tickets with numbers having exactly three prime factors, or 

tickets whose numbers are close to those that were winners in the 

preceding lottery, etc. 

Similarly, when we are firing a well-constructed gun of a given type, 

with a well-trained crew and with shells that have been subjected to a 

standard quality control, the deviation from the mean position of the 

points of impact of the shells will be less than the previously determined 

probable deviation B in approximately half the cases. This fraction remains 
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the same in a series of successive trials, and also in case we count separately 

the number of deviations that are less than B for even-numbered shots 

(in the order of firing) or for odd-numbered. But it is completely possible 

that if we were to make a selection of particularly homogeneous shells 

(with respect to weight, etc.), the scattering would be considerably 

decreased, i.e., we would have a sequence of firings for which the fraction 

of the deviations which are greater than the standard B would be consider¬ 

ably less than a half. 

Thus, to say that an event A is “random” or “stochastic” and to assign 

it a definite probability 

P = PiA/S) 

is possible only when we have already determined the class of allowable 

ways of setting up the series of experiments. The nature of this class will 

be assumed to be included in the conditions S. 

For given conditions S the properties of the event A of being random 

and of having the probability p = P(A/S) express the objective character 

of the connection between the condition S and the event A. In other words, 

there exists no event which is absolutely random, an event is random or is 

predetermined depending on the connection in which it is considered, but 

under specific conditions an event may be random in a completely non- 

subjective sense, i.e., independently of the state of knowledge of any 

observer. If we imagine an observer who can master all the detailed 

distinctive properties and particular circumstances of the flight of shells, 

and can thus predict for each one of them the deviation from the mean 

trajectory, his presence would still not prevent the shells from scattering 

in accordance with the laws of the theory of probability, provided, of 

course, that the shooting was done in the usual manner, and not according 

to instructions from our imaginary observer. 

In this connection we note that the formation of a series of the kind 

discussed earlier, in which there is a tendency for the frequencies to become 

constant in the sense of being grouped around a normal value, namely 

the probability, proceeds in the actual world in a manner completely 

independent of our intervention. For example, it is precisely by virtue of 

the random character of the motion of the molecules in a gas that the 

number of molecules which, even in a very small interval of time, strike 

an arbitrarily preassigned small section of the wall of the container (or of 

the surface of bodies situated in the gas) proves to be proportional with 

very great exactness to the area of this small piece of the wall and to the 

length of the interval of time. Deviations from this proportionality in 

cases where the number of hits is not large also follow the laws of the 



250 XI. THE THEORY OF PROBABILITY 

theory of probability and produce phenomena of the type of Brownian 

motion, of which more will be said later. 

We turn now to the objective meaning of the concept of independence. 

We recall that the conditional probability of an event A under the condition 

B is defined by the formula 

P(/</B) = i™r- (30) P{B) 

We also recall that events A and B are called independent if, as in (4), 

P (AB) = P(4)P(fl). 

From the independence of the events A and B and the fact that P(Z?) > 0 

it follows that 

P{A/B) = P(4). 

All the theorems of the mathematical theory of probability that deal 

with independent events apply to any events satisfying the condition (4), 

or to its generalization to the case of the mutual independence of several 

events. These theorems will be of little interest, however, if this definition 

bears no relation to the properties of objective events which are indepen¬ 

dent in the causal sense. 

It is known, for example, that the probability of giving birth to a boy is, 

with sufficient stability, P(A) = 22/43. If B denotes the condition that the 

birth occur on a day of the conjunction of Jupiter with Mars, then under 

the assumption that the position of the planets does not influence the fate 

of individuals, the conditional probability P(-4/fl) has the same value: 

P(A/B) = 22/43; i.e., the actual calculation of the frequency of births 

of boys under such special astrological conditions would give just the same 

frequency 22/43. Although such a calculation has probably never been 

carried out on a sufficiently large scale, still there is no reason to doubt 

what the result would be. 

We give this example, from a somewhat outmoded subject, in order to 

show that the development of human knowledge consists not only in 

establishing valid relations among phenomena, but also in refuting 

imagined relations, i.e., in establishing in relevant cases the thesis of the 

independence of any two sets of events. This unmasking of the meaningless 

attempts of the astrologers to connect two sets of events that are not in 

fact connected is one of the classic examples. 

Naturally, in dealing with the concept of independence, we must not 

proceed in too absolute a fashion. For example, from the law of universal 

graviation, it is an undoubted fact that the motions of the moons of Jupiter 

have a certain effect, say, on the flight of an artillery shell. But it is also 
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obvious that in practice this influence may be ignored. From the philo¬ 

sophical point of view, we may perhaps, in a given concrete situation, 

speak more properly not of the independence but of the insignificance of 

the dependence of certain events. However that may be, the independence 

of events in the cited concrete and relative sense of this term in no way 

contradicts the principle of the universal interconnection of all phenomena; 

it serves only as a necessary supplement to this principle. 

The computation of probabilities from formulas derived by assuming 

the independence of certain events is still of practical interest in cases 

where the events were originally independent but became interdependent 

as a result of the events themselves. For example, one may compute 

probabilities for the collision of particles of cosmic radiation with particles 

of the medium penetrated by the radiation, on the assumption that the 

motion of the particles of the medium, up to the time of the appearance 

near them of a radpidly moving particle of cosmic radiation, proceeds 

independently of the motion of the cosmic particle. One may compute 

the probability that a hostile bullet will strike the blade of a rotating 

propeller, on the assumption that the position of the blade with respect 

to the axis of rotation does not depend on the trajectory of the bullet, a 

supposition that will of course be wrong with respect to the bullets of the 

aviator himself, since they are fired between the blades of the rotating 

propeller. The number of such examples may be extended without limit. 

It may even be said that wherever probabilistic laws turn up in any 

clear-cut way we are dealing with the influence of a large number of 

factors that, if not entirely independent of one another, are interconnected 

only in some weak sense. 

This does not at all mean that we should uncritically introduce assump¬ 

tions of independence. On the contrary, it leads us, in the first place, to 

be particularly careful in the choice of criteria for testing hypotheses of 

independence, and second, to be very careful in investigating the borderline 

cases where dependence between the facts must be assumed but is of such 

a kind as to introduce complications into the relevant laws of probability. 

We noted earlier that the classical Russian school of the theory of prob¬ 

ability has carried out far-reaching investigations in this direction. 

To bring to an end our discussion of the concept of independence, we 

note that, just as with the definition of independence of two events given 

in formula (4), the formal definition of the independence of several random 

variables is considerably broader than the concept of independence in 

the practical world, i.e., the absence of causal connection. 

Let us assume, for example, that the point f falls in the interval [0, 1] in 

such a manner for 

0 sga s$ 1 



252 XI. THE THEORY OF PROBABILITY 

the probability that it belongs to the segment [a, b] is equal to the length 

of this segment b — a. It is easy to prove that in the expansion 

5 10 100 1000 

of the abscissa of the point f in a decimal fraction, the digits ak will be 

mutually independent, although they are interconnected by the way they 

are produced.* (From this fact follow many theoretical results, some of 

which are of practical interest.) 

Such flexibility in the formal definition of independence should not be 

considered as a blemish. On the contrary it merely extends the domain of 

applicability of theorems established for one or another assumption of 

independence. These theorems are equally applicable in cases where the 

independence is postulated on the basis of practical considerations and in 

cases where the independence is proved by computation proceeding from 

previous assumptions concerning the probability distributions of the 

events and the random variables under study. 

In general, investigation of the formal structure of the mathematical 

apparatus of the theory of probability has led to interesting results. It turns 

out that this apparatus occupies a very definite and clear-cut place in the 

classification, which nowadays is gradually becoming clear in outline, of 

the basic objects of study in contemporary mathematics. 

We have already spoken of the concepts of intersection AB and union 

A u B of the events A and B. We recall that events are called mutually 

exclusive if their intersection is empty, i.e., if AB = TV, where N is the 

symbol for an impossible event. 

The basic axiom of the elementary theory of probability consists of the 

requirement (cf. §2) that under the condition AB = N we have the equation 

P(A u B) = P(/l) + P(fl). 

The basic concepts of the theory of probability, namely random events 

and their probabilities, are completely analogous in their properties to 

plane figures and their areas. It is sufficient to understand by AB the 

intersection (common part) of two figures, by A u B their union, by N 
the conventional “empty” figure, and by P(^) the area of the figure A, 
whereupon the analogy is complete. 

* This is also valid, for any n, for the digits a„ in the expansion of the number f 
in the fraction 

<=-+S+fj+"*• n n1 
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The same remarks apply to the volumes of three-dimensional figures. 

The most general theory of entities of such a type, which contains as 

special cases the theory of volume and area, is now usually called measure 
theory, discussed in Chapter XV in connection with the theory of functions 

of a real variable. 

It remains only to note that in the theory of probability, in comparison 

with the general theory of measure or in particular with the theory of area 

and volume, there is a certain special feature: A probability is never greater 

than one. This maximal probability holds for a necessary event U. 

P (U) = 1. 

The analogy is by no means superficial. It turns out that the whole 

mathematical theory of probability from the formal point of view may be 

constructed as a theory of measure, making the special assumption that 

the measure of “the entire space” U is equal to one.* 

Such an approach to the matter has produced complete clarity in the 

formal construction of the mathematical theory of probability and has also 

led to concrete progress not only in this theory itself but in other theories 

closely related to it in their formal structure. In the theory of probability 

success has been achieved by refined methods developed in the metric 

theory of functions of a real variable and at the same time probabilistic 

methods have proved to be applicable to questions in neighboring domains 

of mathematics not “by analogy,” but by a formal and strict transfer of 

them to the new domain. Wherever we can show that the axioms of the 

theory of probability are satisfied, the results of these axioms are appli¬ 

cable, even though the given domain has nothing to do with randomness 

in the actual world. 

The existence of an axiomatized theory of probability preserves us from 

the temptation “to define” probability by methods that claim to construct 

a strict, purely formal mathematical theory on the basis of features of 

probability that are immediately suggested by the natural sciences. Such 

definitions roughly correspond to the “definition” in geometry of a point 

as the result of trimming down a physical body an infinite number of 

times, each time decreasing its diameter by a factor of 2. 

With definitions of this sort, probability is taken to be the limit of the 

frequency as the number of experiments increases beyond all bounds. 

The very assumption that the experiments are probabilistic, i.e., that the 

frequencies tend to cluster around a constant value, will remain valid (and 

* Nevertheless, because of the nature of its problems, the theory of probability 
remains an independent mathematical discipline; its basic results (presented in detail 
in §3) appear artificial and unnecessary from the point of view of pure measure theory. 
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the same is true for the “randomness” of any particular event) only 

if certain conditions are kept fixed for an unlimited time and with absolute 

exactness. Thus the exact passage to the limit 

cannot have any objective meaning. Formulation of the principle of 

stability of the frequencies in such a limit process demands that we define 

the allowable methods of setting up an infinite sequence of experiments, 

and this can only be done by a mathematical fiction. This whole conglom¬ 

eration of concepts might deserve serious consideration if the final result 

were a theory of such distinctive nature that no other means existed of 

putting it on a rigorous basis. But, as was stated earlier, the mathematical 

theory of probability may be based on the theory of measure, in its present- 

day form, by simply adding the condition 

P(t/)= I. 

In general, for any practical analysis of the concept of probability, there 

is no need to refer to its formal definition. It is obvious that concerning 

the purely formal side of probability, we can only say the following: The 

probability P(A/S) is a number around which, under conditions 5 deter- 

ming the allowable manner of setting up the experiments, the frequencies 

have a tendency to be grouped, and that this tendency will occur with 

greater and greater exactness as the experiments, always conducted in 

such a way as to preserve the original conditions, become more numerous, 

and finally that the tendency will reach a satisfactory degree of reliability 

and exactness during the course of a practicable number of experiments. 

In fact, the problem of importance, in practice, is not to give a formally 

precise definition of randomness but to clarify as widely as possible the 

conditions under which randomness of the cited type will occur. One must 

clearly understand that, in reality, hypotheses concerning the probabilistic 

character of any phenomenon are very rarely based on immediate 

statistical verification. Only in the first stage of the penetration of prob¬ 

abilistic methods into a new domain of science has the work consisted of 

purely empirical observation of the constancy of frequencies. From §3, 

we see that statistical verification of the constancy of frequencies with an 

exactness of < requires a series of experiments, each consisting of 

n = 1 /c* trials. For example, in order to establish that in a given concrete 

problem the probability is defined with an exactness of 0.0001, it is neces¬ 

sary to carry out a series of experiments containing approximately 

100,000,000 trials in each. 
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The hypothesis of probabilistic randomness is much more often intro¬ 

duced from considerations of symmetry or of successive series of events, 

with subsequent verification of the hypothesis in some indirect way. For 

example, since the number of molecules in a finite volume of gas is of the 

order of 1020 or more, the number y/n, corresponding to the probabilistic 

deductions made in the kinetic theory of gases, is very large, so that many 

of these deductions are verified with great exactness. Thus, the pressures 

on the opposite sides of a plate suspended in still air, even if the plate is 

of microscopic dimensions, turn out exactly the same, although an excess 

of pressure on one side of the order of a thousandth of one per cent can 

be detected in a properly arranged experiment. 

§5. Deterministic and Random Processes 

The principle of causal relation among phenomena finds its simplest 

mathematical expression in the study of physical processes by means of 

differential equations as demonstrated in a series of examples in §1 of 

Chapter V. 

Let the state of the system under study be defined at the instant of time t 
by n parameters 

*i. x,, —, xn . 

The rates of change of these parameters are expressed by their derivatives 

with respect to time 

If it is assumed that these rates are functions of the values of the para¬ 

meters, then we get a system of differential equations 

=/.(* 
X2 = fl(x1 »**•'"» xn)i 

*n = /„(*! .*2, —,X«Y 

The greater part of the laws of nature discovered at the time of the birth 

of mathematical physics, beginning with Galileo’s law for falling bodies, 

are expressed in just such a manner. Galileo could not express his discovery 

in this standard form, since in his time the corresponding mathematical 

concepts had not yet been developed, and this was first done by Newton. 

In mechanics and in any other fields of physics, it is customary to express 

these laws by differential equations of the second order. But no new 
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principles are involved here; for if we denote the rates xk by the new 

symbols 

= xk, 

we get for the second derivative of the quantities xk the expressions 

d*xk 

dt* 
= vk. 

and the equations of the second order for the n quantities x, , x2, •••, x„ 

become equations of the first order for the In quantities x,, •••, xn, 

, vn . 
As an example, let us consider the fall of a heavy body in the atmosphere 

of the earth. If we consider only short distances above the surface, we may 

assume that the resistance of the medium depends only on the velocity 

and not on the height. The state of the system under study is characterized 

by two parameters: the distance z of the body from the surface of the earth, 

and its velocity v. The change of these two quantities with time is defined 

by the two differential equations 

i = - v, 

v = g -/(«>). 
(31) 

where g is the acceleration of gravity and f(v) is some “law of resistance” 

for the given body. 

If the velocity is not great and the body is sufficiently massive, say a 

stone of moderate size falling from a height of several meters, the resistance 

of the air may be neglected and equations (31) are transformed into the 

equations 

If it is assumed that at the initial instant of time t0 the quantities z and v 
have values z„ and v0 , then it is easy to solve equations (32) to obtain the 

formula 

z = z„-tit - t0) - g , 

which describes the whole process of falling. For example, if /„ = 0, 

v0 = 0 we get 

found by Galileo. 
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In the general case, the integration of equations (31) is more difficult, 

although the basic result, with very general restrictions on the function 

f(v), remains the same: Given the values z0 and v0 at the initial instant t0 , 
the values of z and v for all further instants t are computed uniquely, up 

to the time that the falling body hits the surface of the earth. Theoretically, 

this last restriction may also be removed, if we assume that the fall is 

extended to negative values of z. For problems set up in this manner, 

the following may be established: If the function f(v) is monotone 

for increasing v and tends to infinity for v -*■ oo, then if the fall continues 

unchecked, i.e., for unbounded growth of the variable l, the velocity v 
tends to a constant limiting value c, which is the solution of the equation 

g =f(c). 

From the intuitive point of view, this result of the mathematical analysis 

of the problem is quite understandable: The velocity of fall increases up 

to the time that the accelerative force of gravity is balanced by the resist¬ 

ance of the air. For a jump with an open parachute, the stationary velocity 

v of about five meters per second is attained rather quickly.* For a long 

jump with unopened parachute the resistance of the air is less, so that 

the stationary velocity is greater and is attained only after the parachutist 

has fallen a very long way. 

For the falling of light bodies like a feather tossed into the air or a bit 

of fluff, the initial period of acceleration is very short, often quite 

unobservable. The stationary rate of falling is established very quickly, 

and to a standard approximation we may consider that throughout the 

fall v = c. In this case we have only one differential equation 

i = - c, 

which is integrated very simply: 

z = z0-c(t- l0). 

This is how a bit of fluff will fall in perfectly still air. 

This deterministic conception is treated in a completely general way in 

the contemporary theory of dynamical systems, to which is dedicated a 

series of important works by Soviet mathematicians, N. N. Bogoljubov, 

V. V. Stepanov, and many others. This general theory also includes as 

special cases the mathematical formulation of physical phenomena in 

which the state of a system is not defined by a finite number of parameters 

* This statement is to be taken in the sense that in practice v soon gets quite close 
to c. 
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as in the earlier case, but by one or more functions, for example, in the 

mechanics of continuous media. In such cases the elementary laws for 

change of state in “infinitely small” intervals of time are given not by 

ordinary but by partial differential equations or by some other means. 

But the features common to all deterministic mathematical formulations 

of actual processes are: first, that the state of the system under study is 

considered to be completely defined by some mathematical entity w (a 

set of n real numbers, one or more functions, and so forth); and second, 

that the later values for instants of time t > i0 are uniquely determined by 

the value u>0 at the initial instant t0 

<*> = F(t0 , co0, t). 

For phenomena described by differential equations the process of finding 

the function <f> consists, as we have seen, in integrating these differential 

equations with the initial conditions ut = o>0 for t = i„. 
The proponents of mechanistic materialism assumed that such a 

formulation is an exact and direct expression of the deterministic character 

of the actual phenomena, of the physical principle of causation. According 

to Laplace, the state of the world at a given instant is defined by an infinite 

number of parameters, subject to an infinite number of differential 

equations. If some “universal mind” could write down all these equations 

and integrate them, it could then predict with complete exactness, 

according to Laplace, the entire evolution of the world in the infinite 

future. 

But in fact this quantitative mathematical infinity is extremely coarse 

in comparison with the qualitatively inexhaustible character of the real 

world. Neither the introduction of an infinite number of parameters nor 

the description of the state of continuous media by functions of a point 

in space is adequate to represent the infinite complexity of actual events. 

As was emphasized in §3 of Chapter V, the study of actual events does 

not always proceed in the direction of increasing the number of parameters 

introduced into the problem; in general, it is far from expedient to complic¬ 

ate the cu which describes the separate “states of the system” in our 

mathematical scheme. The art of the investigation consists rather in 

finding a very simple space Q (i.e., a set of values of w or in other words, 

of different possible states of the system),* such that if we replace the 

actual process by varying the point o> in a determinate way over this 

space, we can include all the essential aspects of the actual process. 

* In the example given earlier of a falling body, the phase space is the system of 
pairs of numbers (z, v), i.e., a plane. For phase spaces in general, see Chapters XVII 
and XVIII. 
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But if from an actual process we abstract its essential aspects, we are 

left with a certain residue which we must consider to be random. The 

neglected random factors always exercise a certain influence on the course 

of the process. Very few of the phenomena that admit mathematical 

investigation fail, when theory is compared with observation, to show the 

influence of ignored random factors. This is more or less the state of 

affairs in the theory of planetary motion under the force of gravity: The 

distance between planets is so large in comparison with their size that the 

idealized representation of them as material points is almost perfectly 

satisfactory; the space in which they are moving is filled with such dispersed 

material that its resistance to their motion is vanishingly small; the masses 

of the planets are so large that the pressure of light plays almost no 

role in their motions. These exceptional circumstances explain the fact 

that the mathematical solution for the motion of a system of n material 

points, whose “states” are described by 6n parameters* which take into 

account only the force of gravity, agrees so astonishingly well with 

observation of the motion of the planets. 

Somewhat similar to the case of planetary motion is the flight of an 

artillery shell under gravity and resistance of the air. This is also one of 

the classical regions in which mathematical methods of investigation were 

comparatively easy and quickly produced great success. But here the role 

of the perturbing random factors is significantly larger and the scattering 

of the shells, i.e., their deviation from the theoretical trajectory reaches 

tens of meters, or for long ranges even hundreds of meters. These 

deviations are caused partly by random deviations in the initial direction 

and velocity, partly by random deviations in the mass and the coefficient 

of resistance of the shell, and partly by gusts and other irregularities in 

the wind and the other random factors governing the extraordinarily 

complicated and changing conditions in the actual atmosphere of the earth. 

The scattering of shells is studied in detail by the methods of the theory 

of probability, and the results of this study are essential for the practice 

of gunnery. 

But what does it mean, properly speaking, to study random events? 

It would seem that, when the random “residue” for a given formulation 

of a phenomenon proves to be so large that it can not be neglected, then 

the only possible way to proceed is to describe the phenomenon more 

accurately by introducing new parameters and to make a more detailed 

study by the same method as before. 

But in many cases such a procedure is not realizable in practice. For 

example, in studying the fall of a material body in the atmosphere, with 

The three coordinates and the three components of the velocity of each point. 
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account taken of an irregular and gusty (or, as one usually says, turbulent) 

wind flow, we would be required to introduce, in place of the two para¬ 

meters z and v, an altogether unwieldy mathematical apparatus to describe 

this structure completely. 

But in fact this complicated procedure is necessary only in those cases 

where for some reason we must determine the influence of these residual 

“random” factors in all detail and separately for each individual factor. 

Fortunately, our practical requirements are usually quite different; we 

need only estimate the total effect exerted by the random factors for a 

long interval of time or for a large number of repetitions of the process 

under study. 

As an example, let us consider the shifting of sand in the bed of a river, 

or in a hydroelectric construction. Usually this shifting occurs in such a 

way that the greater part of the sand remains undisturbed, while only 

now and then a particularly strong turbulence near the bottom picks up 

individual grains and carries them to a considerable distance, where they 

are suddenly deposited in a new position. The purely theoretical motion 

of each grain may be computed individually by the laws of hydrodynamics, 

but for this it would be necessary to determine the initial state of the 

bottom and of the flow in every detail and to compute the flow step by 

step, noting those instants when the pressure on any particular grain of 

sand becomes sufficient to set it in motion, and tracing this motion until 

it suddenly comes to an end. The absurdity of setting up such a problem 

for actual scientific study is obvious. Nevertheless the average laws or, as 

they are usually called, the statistical laws of shifting of sand over river 

bottoms are completely amenable to investigation. 

Examples of this sort, where the effect of a large number of random 

factors leads to a completely clear-cut statistical law, could easily be 

multiplied. One of the best known and at the same time most fascinating 

of these, in view of the breadth of its applications, is the kinetic theory of 

gases, which shows how the joint influence of random collisions of 

molecules gives rise to exact laws governing the pressure of a gas on the 

wall, the diffusion of one gas through another, and so forth. 

§6. Random Processes of Markov Type 

To A. A. Markov is due the construction of a probabilistic scheme which 

is an immediate generalization of the deterministic scheme of §5 described 

by the equation 

= E(t0, w„, t). 

It is true that Markov considered only the case where the phase space of 
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the system consists of a finite number of states Q = (<u,, w2, •••, w„) and 

studied the change of state of the system only for changes of time t in 

discrete steps. But in this extremely schematic model he succeeded in 

establishing a series of fundamental laws. 

Instead of a function F, uniquely defining the state w at time t > i0 
corresponding to the state co0 at time /„, Markov introduced the probabili¬ 

ties 

('o. wi) 

of obtaining the state «>t at time t under the condition that at time l0 we 

had the state to,. These probabilities are connected for any three instants 

of time 

to < 'i < 

by a relation, introduced by Markov, which may be called the basic 

equation for a Markov process 

n 

P('o»<*><; h. = 2) P(/0. ; '1. <v*)P(r,, wk; t2, to,). (33) 

When the phase space is a continuous manifold, the most typical case 

is that a probability density p(t0, w0 ; t, u>) exists for passing from the 

state ojq to the state co in the interval of time (r0, r)- In this case the 

probability of passing from the state o>0 to any of the states <o belonging 

to a domain G in the phase space Q is written in the form 

P('o. i t,G) = f p(t0, <u0 ; t, w) dw, (34) 
J c 

where dw is an element of volume in the phase space.* For the probability 

density p(t0, cv0; t, w), the basic equation (33) takes the form 

p(t 0 , <"o; '2 ,<"*)= [ pi.10-“oi t,, to) p(r,, W\ t2,w2) dw. (35) 

Equation (35) is usually difficult to solve, but under known restrictions 

we may deduce from it certain partial differential equations that are easy 

to investigate. Some of these equations were derived from nonrigorous 

physical considerations by the physicists Fokker and Planck. In its 

complete form this theory of so-called stochastic differential equations 

* Properly speaking, equation (34) serves to define the probability density. The 
quantity p du> is equal (up to an infinitesimal of higher order) to the probability of 
passing in the time from r0 to 1 from the state wt to the clement of volume dw. 
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was constructed by Soviet authors, S. N. BernSteln, A. N. Kolmogorov, 

I. G. Petrovskil, A. Ja. Hiniin, and others. 

We will not give these equations here. 

The method of stochastic differential equations allows us, for example, 

to solve without difficulty the problem of the motion in still air of a very 

small body, for which the mean velocity c of its fall is significantly less 

than the velocity of the “Brownian motion” arising from the fact, because 

of the smallness of the particle, its collisions with the molecules of the 

air are not in perfect balance on its various sides. 

Let c be the mean velocity of fall, and D be the so-called coefficient of 

diffusion. If we assume that a particle does not remain on the surface of 

the earth (z = 0) but is “reflected”, i.e., under the influence of the 

Brownian forces it is again sent up into the atmosphere, and if we also 

assume that at the instant r„ the particle is at height z& then the probability 

density p(t0 , z0; t, z) of its being at height z at the instant t is expressed 

by the formula 

P(lo . 1 f,z) = 
1 

2 VnD(t - /„) 

l*+*o»* 1 («*-*.» 
g 4Dll-1,1 _|_ g «Dl(-l0) 4 D 

—-Vg e-«/° 4?-** dz. 
D v 5 j 

Jv'DII-l,) 

In figure 4 we illustrate how the curves p(t0, z0; I, z) may change for a 

sequence of instants l. 
We see that in the mean the height of the particle increases, and its 

position is more and more indefinite, more “random.” The most interesting 

aspect of the situation is that for any t„ and z0 and for t -*• co 

p(t0, z0 ; t,z)-*^ e~cz/D ; (36) 

i.e., there exists a limit distribution for the height of the particle, and the 

mathematical expectation for this height with increasing t tends to a 

positive limit 

z* = ± ^ ze-“/° dz = ^. (37) 

So in spite of the fact that as long as our particle is above the surface of 
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the earth, it will always tend to fall because of the force of gravity, 

nevertheless, as this process (wandering in the atmosphere) continues, 

the particle will be found on the average at a definite positive height. If we 

take the initial z0 smaller than z*, it will turn out that in a sufficiently great 

interval of time the mean position of the particle will be higher than its 

initial position, as is shown in figure 5, where z„ = 0. 

For individual particles the mean values z* under discussion here are 

only mathematical expectations, but from the law of large numbers it 

follows that for a large number of particles they will actually be realized: 

The density of the distribution in height of such particles will follow from 

the indicated laws, and, in particular, after a sufficient interval of time 

this density will become stable in accordance with formula (36). 

What has been said so far is immediately applicable only to gases, to 

smoke the like, which occur in the air in small concentrations, since the 

quantities c and D were assumed to be defined by a preassigned state of 

the atmosphere. However with certain complications, the theory is 

applicable to the mutual diffusion of the gases that compose the atmos¬ 

phere, and to the distribution in height of their densities arising from this 

mutual diffusion. 

The quotient c/D increases with the size of the particles, so that the 

character of the motion changes from diffusion to regular fall in accordance 

with the laws considered in §5. The theory allows us to trace all transitions 

between purely diffusive motion and such laws of fall. 
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The problem of motion of particles suspended in a turbulent atmosphere 

is more difficult, but in principle it may be handled by similar probabilistic 

methods. 
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CHAPTER XII 

APPROXIMATIONS 
OF FUNCTIONS 

§1. Introduction 

In practical life we are constantly faced with the problem of approxi¬ 

mating certain numbers by means of others. For example, our measure¬ 

ments of various concrete magnitudes, length, area, temperature, and so 

forth, lead us to numbers that are only approximations. In practice we 

use only rational numbers, i.e., numbers of the form p/q, where p and 

q(q ?£ 0) are integers. But, in addition to the rational numbers, the 

irrational numbers also exist, and although we do not use them in 

measuring, still our theoretical arguments often lead to them. We know, 

for example, that the length of the circumference of a circle of radius 

r = £ is equal to the irrational number n, and the length of the hypotenuse 

of a right triangle with unit sides is equal to y/2. In actual computations 

with irrational numbers, one first of all approximates them by rational 

numbers with a required degree of exactness, usually by means of a 

terminating decimal fraction. 

The same situation also occurs for functions. The quantitative laws of 

nature are expressed in mathematics by means of functions, not with 

absolute exactness, but approximately, with various degrees of precision. 

Further, in a vast number of cases we find it necessary, even for functions 

defined by completely mathematical rules, to approximate them by 

other functions with specified exactness so as to be able to compute 

them in practice. 

However, these remarks do not refer to computations only. The problem 

of defining a function by means of other functions has great theoretical 

importance. Let us illustrate in a few words. The development of mathe- 
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matical analysis has led to the discovery and study of very important 

classes of approximating functions that under known conditions have 

proved to be the natural means of approximating other more or less 

arbitrary functions. These classes turned out to be, above all, the algebraic 

and trigonometric polynomials, and also their various generalizations. 

It was shown that from the properties of the function to be approximated 

we may estimate, under certain conditions, the character of its deviation 

from a specific sequence of functions approximating it. Conversely, if 

we know how it deviates from its approximation by a sequence of 

functions, we can establish certain properties of the function. In this 

direction a theory of functions has been constructed that is based on 

their approximate representation by various classes of approximating 

functions. There is a similar theory in the theory of numbers. In it the 

properties of irrational numbers are studied on the basis of their ap¬ 

proximations by rational numbers. 

In Chapter II the reader has already met one very important method 

of approximation, namely Taylor’s formula. With its help a function 

satisfying certain conditions is approximated by another function of the 

form P(x) = a0 + atx 4- ••• + a„x”, which is called an algebraic poly¬ 

nomial. Here the ak are constants, independent of x. 
An algebraic polynomial has a very simple structure; in order to 

compute it for given coefficients ak and given values of x we need to 

apply only the three arithmetic operations, addition, subtraction, and 

multiplication. The simplicity of this computation is extremely important 

in practice and is one of the reasons why algebraic polynomials are the 

most widespread means of approximating functions (another important 

reason is discussed later). It is sufficient to point out that especially at 

the present time technical computations must be carried out on computing 

machines on a massive scale. In their present state of perfection computing 

machines work very rapidly and tirelessly. However, machines can 

perform only relatively simple operations. They may be set to perform 

arithmetic operations on very large numbers, but never, for example, 

the infinite process of passage to the limit. A machine cannot compute 

log x exactly, but we can approximate log x by a polynomial P(x) with 

any required degree of accuracy, and then compute the polynomial by a 

machine. 

In addition to Taylor’s formula, there are others of great practical 

importance in the approximation of functions by algebraic polynomials. 

Among them are the various interpolation formulas, which are widely 

used, in particular, in approximate computation of integrals, and also 

in approximate integration of differential equations. Well known also is 

the method of approximation in the sense of the mean square, which is 
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very widely used with other functions as well as algebraic polynomials. 

For certain practical questions great importance is attached to the method 

of best uniform (or CebySev) approximation, originated by the great 

Russian mathematician CebySev, a method which arose, as we will see, 

from the. solution of a problem connected with the construction of 

mechanisms. 

Our present purpose is to give the reader some idea of these methods 

and, as far as possible, to state the conditions under which one method 

is preferable to another. No one of them is absolutely the best. Every 

method can be seen to be better than the others under certain conditions. 

For example, if we have a physical problem to solve, then some one 

method of approximating the functions that occur in the problem is 

particularly indicated by the character of the problem itself or, as one 

says, by physical considerations. Also we will see later that under well- 

known conditions one method of approximation may be applicable, and 

another not. 

Each of the methods of computation arose in its own time and has 

its own characteristic theory and history. Newton was already familiar 

with a formula for interpolation and gave it a very convenient form for 

practical computation with what are called difference quotients. The 

method of approximation in the sense of the mean square is at least 

150 years old. But, for a long time these methods did not give rise to a 

connected theory. They were only various practical methods of approxi¬ 

mating functions, and furthermore, the restrictions on their applicability 

were not clear. 

The present theory of approximations to functions arose from the work 

of CebySev, who introduced the important concept of best approximation, 

in particular best uniform approximation, made systematic use of it in 

practical applications and developed its theoretical basis. Best approxi¬ 

mation is the fundamental concept in the contemporary theory of 

approximation. After CebySev, his ideas were developed further by his 

students E. I. Zolotarev, A. N. Korkin, and the brothers A. A. and 

V. A. Markov. In the CebySev period of the theory of approximation 

of functions, not only were the fundamental concepts introduced, but 

basic methods were found for obtaining the best approximations to 

arbitrary individual functions, methods which are in wide use at the 

present time; also, there were basic investigations of the properties of 

the approximating classes, particularly of algebraic and trigonometric 

polynomials, from the point of view of the requirements arising from 

practical problems. 

The further development of the theory of approximation of functions 

was influenced by an important mathematical discovery, made at the 
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end of the last century by the German mathematician Weierstrass. With 
complete rigor he proved the theoretical possibility of approximating 
an arbitrary continuous function by an algebraic polynomial with any 
given degree of accuracy. This is the second reason why algebraic poly¬ 
nomials are a universal means of approximating functions. The mere 
simplicity of construction of algebraic polynomials is not sufficient; we 
also require the possibility of approximating any continuous function by 
a polynomial with arbitrary prescribed error. This possibility was proved 
by Weierstrass. 

The profound ideas of CebySev on best approximation and the theorem 
of Weierstrass served as a basis, at the beginning of the present century, 
of the present-day development in the theory of approximation. In this 
connection let us mention the names of S. N. BernSteln, Borel, Jackson, 
Lebesgue, and de la Vall6e-Poussin. Briefly, this development may be 
described as follows. Up to the time of CebySev (the beginning of the 
present century), the problems usually consisted of approximation of 
individual functions, but the characteristic problem of the present-day 
period is the approximation, by polynomials or otherwise, of entire 
classes of functions, analytic, differentiable, and the like. 

The Russian school, and now the Soviet school, of the theory of 
approximation has played a leading role in this theory. Important 
contributions have been made by S. N. BernSteln, A. N. Kolmogorov, 
M. A. Lavrent’ev, and their students. At the present time the theory 
has developed into an essentially distinct branch of the theory of functions. 

In addition to algebraic polynomials, another very important means of 
approximation consists of the trigonometric polynomials. A trigonometric 
polynomial of order n is a function of the form 

u„(x) = a0 + a, cos x + PiSinx + a, cos 2x + sin 2x + 

••• + a„ cos nx -f f}„ sin nx, 

or more concisely 
n 

u„(x) = <*„ + 2) (“* cos kx + sin kx). 

where ak and /3* are constants. 
There are various particular methods of approximation by trigonometric 

polynomials, which are usually connected in a rather simple way with 
the corresponding methods of approximation by algebraic polynomials. 
Among these methods an especially important role is played by the 
expansion of functions in a Fourier series (see §7). These series are known 
by the name of the French mathematician Fourier, who at the beginning 
of the last century made several theoretical discoveries concerning them, 
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in his study of the conduction of heat. However, it should be noted that 

trigonometric series were investigated as early as the middle of the 

18th century by the great mathematicians Leonhard Euler and Daniel 

Bernoulli. In Euler’s work they were related to his researches in as¬ 

tronomy, and in Bernoulli’s to his study of the oscillating string. We may 

remark that Euler and Bernouilli raised the fundamentally significant 

question of the possibility of representing a more or less arbitrary function 

by a trigonometric series, a question which was finally answered only in 

the middle of the last century. Its affirmative answer, discussed later, 

was anticipated by Bernoulli. 

Fourier series are of great importance in physics, but we will give 

little attention to this aspect of them, since it has been considered in 

Chapter VI. In that chapter also the reader will find examples of physical 

problems that naturally lead to the expansion of a given function in 

series other than the trigonometric series but with great similarly to them. 

We refer to the so-called series of orthogonal functions. 

Fourier series have had a history of two hundred years. So it is not 

surprising that by now their theory is extraordinarily broad, subtle, and 

profound and constitutes an independent discipline in mathematics. An 

especially remarkable role in this theory has been played by the Moscow 

school of the theory of functions of a real variable, N. N. Luzin, A. N. 

Kolmogorov, D. E. Men’Sov, and others. 

We note also that the significance of trigonometric polynomials in 

contemporary mathematics is hardly exhausted by their role as methods 

of approximation. For example, in Chapter X the reader became ac¬ 

quainted with the fundamental results of I. M. Vinogradov in the theory 

of numbers, which were derived on the basis of a suitably devised apparatus 

of trigonometric sums (polynomials). 

§2. Interpolation Polynomials 

A special case of the construction of interpolating polynomials. In 

practical computations the interpolation method of approximating a 

function is widely used. To introduce the reader to a range of questions 

of this type, we consider the following elementary problem. 

Let the function y = f(x) be given on the interval [x0 , x2], with graph 

as illustrated in figure 1. The appearance of this graph is reminiscent of 

an arc of a parabola. So if we wish to approximate our function by a 

simple function, it is natural to choose a polynomial of the second degree 

P(x) = a0 + o,x + fl2x2, (1) 

the graph of which is a parabola. 
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The interpolation method consists of the following. In the interval 

[*o»*2] we choose an interior point x, . The points x„, x,, x2 give cor¬ 

responding values of our function 

To = /(*o). Ti = /(*i). T2 = /(■**)• 

We construct a polynomial (1) such that at the points x0, Xj, x2 it 

agrees with the function in question (its graph is shown by the dashed 

curve in figure 1). In other 

words, we must choose the 

coefficients a0, a,, a2 in the 

polynomial (1) so that they 

satisfy the equations 

p(xo) = To. P(xi) = Ti. 

P(x2) = y'. (2) 

We note that our function 

/(x) may be defined otherwise 

than by a formula; for example, 

its values may be given em¬ 

pirically as shown by the graph in figure 1. To solve the interpolation 

problem, we choose an approximating function in the form of an analytic 

expression, namely the polynomial P(x). If the exactness of the approxi¬ 

mation is satisfactory, the polynomial so chosen has the advantage over 

the original function that we can compute its intermediate values. 

This interpolation problem could be solved as follows: We could set up 

the three equations 

To = 0O + <tyf» + 02*0 . 

Ti = ao + 0i*i + 02*5. 

T2 = 00 + 01*2 + 02*2 . 

solve them for a0, a,, a2 and substitute the values of these coefficients 

in equation (1). But let us solve it in a somewhat different way. We begin 

by constructing the polynomial (?0(x) of the second degree such that it 

satisfies the three conditions: Q0(x0) = 1, Q0(x,) = 0, Q„(x2) = 0. From 

the last two conditions it follows that this polynomial must have the form 

A(x — x,)(x — Xj), and from the first condition that 

(*o - *iX*o - *2) 
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So, the desired polynomial has the form 
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OAx) = (* — ~ 
(x0 xi)(xo xi) 

Similarly the polynomials 

_ (x - x0Xx - x2) _ (* - x„)(x - xx) 

' ) (x, - x0)(x, - x*) ’ ^ ’ (x2 - x0)(x2 - x.) 

satisfy the conditions 

aw = = o, e,(x,) = i, 

G.(* o) = G*(*,) = 0, QtCxt) = 1. 

Further, it is obvious that the polynomial y0Q0(x) has the value y0 for 

x = x„ and vanishes for x = x, and x = x2, and corresponding proper¬ 

ties hold for the polynomials yxQx(x) and y202(x). 

Hence it readily follows that the desired interpolating polynomial is 

given by the formula 

?{*) = yoQ«(x) + yiQM + yxQM 

= (X - X,)(X - X2) (X - x0)(x - Xt) 

y° (x0 - Xx)(x„ - Xt) y' (x, - x„)(x, - Xj) 

+ (x - x„X* - xx) 

'*(x* + x0)(x2 - X,) ' 
(3) 

We note that the polynomial so obtained is the unique polynomial of 

the second degree which solves our interpolation problem. For if we 

assume that some other polynomial Px(x) of the second degree is also 

a solution of the problem, then the difference Px(x) — P(x), which is also 

a polynomial of the second degree, vanishes at the three points x = x0, 

x,, x2. But we know from algebra that if a polynomial of the second 

degree vanishes for three values of x, then it is identically zero. So the 

polynomials P(x) and Px(x) agree identically. 

It is clear that in general the polynomial so obtained agrees with the 

given function only at the points x0, x,, x2 and differs from it for other 

values of x. 

If we take x, at the center of the interval [x0, x2] and put x2 — x, 

= x, — x0 = h, then formula (3) is somewhat simplified: 

P(x) = W Mx - xx)(x - xj - 2yx(x - x0)(x - x*) + y^x - x„)(x - x,)]. 
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As an example let us interpolate the sine curve y = sin x (figure 2) 

by a polynomial of degree two, agreeing with it at the points x = 0, n/2, n. 
Obviously, the desired polynomial has the form 

4 
P(x) = —— x(n — x) fts sin x. 

Let us compare sin x and P(x) at two intermediate points: 

P (—) = 0.75, while sin \ ^ w 0.71, 
\ 4 / 4 2 

n / n \ 10 ... . n 9 

Wl,,'e S,"6 “IS’ 

In this way we have approximated sin x on the interval [0, n\ with an 

accuracy* of about 0.05. On the other hand, the expansion of sin jc in a 

Taylor series around the point w/2 gives 

sin x = cos 

If we stop at the second term of the expansion, we have at the point 

x = 0, the approximation sin 0 = 1 — w2/8 0.234, i.e., an error greater 

than 0.2. 

We see that our interpolation method has produced an approximation 

to sin x on the whole interval [0, v] by a polynomial of degree two that 

* However, for a complete justification of this statement, we need to prove that the 
difference (4j/n*)(ir — i) — sin x does not exceed in value 0.05, not only for x = »/4 
and x = ir/6, but also for all x on the interval (0,»]; we will not do this. 
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is more satisfactory than the Taylor-expansion of second degree. However, 

we must not forget that Taylor’s formula gives a very exact approximation 

close to the point x = rr/2 around which it is taken, more exact in this 

neighborhood than the approximation obtained by interpolating. 

The general solution of the problem. It is clear that a more com¬ 

plicated function .v — /(.v), as illustrated in figure 3, is hardly suitable 

for approximation by a polynomial of degree two, since no parabola 

of degree two could follow all the bends of the curve y = /(*). In this 

case it is natural to try an interpolation of the function with a polynomial 

of higher degree (not less than the fourth). 

The general problem of interpolation consists of constructing a poly¬ 

nomial P(x) = a0 +• a,x + fljAr* + ••• 4- anxn of degree n which agrees 

with a given function at n + 1 equations: 

P(x0) =/(*„), />(*,) =/*>,). - , P(xn) =/(*„)■ 

The points at which it is required that the function agree with its approxi¬ 

mating polynomial are called the points of interpolation. 
Reasoning in the same way as for a second-degree polynomial, we can 

easily prove that the desired polynomial may be written in the form 

p( s = y (* - *oXx - *i) •• (v - Xk-,)(x - - (* - x„) f 

nK 1 &(xt - x„)(xt - *,)••(** - xk.t)(xk - xk+l) -(xk - xn)JK th 

(4) 

and further that this polynomial (of degree n) is unique. The formula 

so written is known as Lagrange’s formula. It may also be put in various 

other forms; for example, it is widely used in practice in the form involving 

Newton’s difference quotients. 

The deviation of the interpolation polynomial from the generating function. 

The method of interpolation is a universal means of approximating 

functions. In principle, the function is not required to have any particular 

properties for interpolation to be possible; for example, it is not required 

to have derivatives over the whole interval of approximation. In this 

respect the method of interpolation has an advantage over Taylor’s 

formula. It is interesting to note that there are cases when the function 

is even analytic at every point on an interval but cannot be approximated 

by its Taylor’s formula over the interval. Suppose, for example, that we 

require a good approximation of the function 1/(1 + x2) on the interval 
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[—2, 2] by means of an algebraic polynomial. At first glance it is natural 

to try its expansion in a Taylor series about the point x = 0 

-nh-1 

But it is easy to see that this series is convergent only in the interval 

—1 < x < 1. Outside the interval [—1, 1], it diverges and consequently 

cannot approximate 1/(1 + x*) on the whole interval [—2,2], Nevertheless, 

the interpolation method is completely applicable here. 

Of course, the question arises in each case of choosing the number 

and distribution of the points of interpolation in such a way that the 

error will satisfy certain requirements. For functions with derivatives of 

sufficiently high order, the answer to this question of the possible 

magnitude of error is given by the following classical result, which we 

introduce without proof. 

If on the interval [x0 , x„) the function /(x) has a continuous derivative 

of order n + 1, then for any intermediate value of x the deviation of 

f(x) from the Lagrange interpolation polynomial P(x) with points of 

interpolation x0 < x, < — < xn is given by the formula 

Ax) - P(x) = 
(x - *oX* ~ *i) - (x - x„) 

nl 

where c is an intermediate point between x0 and x„ . This formula is 

reminiscent of the corresponding formula for the remainder term in the 

Taylor expansion and is essentially a generalization of it. So, if it is known 

that the derivative /<"+n(x) of order n + 1 on the interval [x0 , xj nowhere 

exceeds the number M in absolute value, then the error of the approxi¬ 

mation for any value of x on this interval is bounded by the following 

estimate: 

I/M - Pn(x)I < L* -*«l " ]X M. 
nl 

The contemporary theory of approximation provides many other 

methods of estimating the error in interpolation. This question has been 

carefully studied and some interesting, completely unexpected facts have 

been discovered. 

Consider, for example, a smooth function y = f(x), defined on the 

interval [—1, 1], i.e., one whose graph is a continuous curve with a 

continuously varying tangent. Our choice of the interval with specific 
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end points —1 and 1 is unimportant; the facts described here remain 

valid for an arbitrary interval [a, b] with inconsequential changes. 

We assume now that on the interval [—1, I] we have chosen a system 

of n + 1 points 

—1 < *0 < x, < — < < 1 (5) 

and have then constructed the polynomial P(x) = a0 + otx + ••• + a„xn 
of degree n that agrees with f(x) at these points. We will assume tempo¬ 

rarily that the points of the system (5) are equally spaced along the 

interval. If n increases indefinitely, then the corresponding interpolating 

polynomial Pn(x) will agree with f(x) at a greater and greater number 

of points, and we might think that at an intermediate point x, not belonging 

to the system (5), the difference f(x) — P„(x) would converge to zero as 

n -* oo. This opinion was held even at the end of the last century, but 

it was afterwards discovered that the facts are far otherwise. It has been 

shown that for many smooth (even analytic) functions /(*), in the case 

of evenly spaced points of division xk , the interpolating polynomials 

Pn(x) do not at all converge to /(*) as n -*■ oo. The graph of the inter¬ 

polating polynomial certainly agrees with f(x) at the given points of 

interpolation, but in spite of this it deviates strongly for large n from 

the graph of/(x) at intermediate values of x and the deviation increases 

with increasing n. As further investigation showed, this situation may be 

avoided, at least for smooth functions, if the points of interpolation are 

distributed more sparsely near the center of the interval and more 

densely near the ends. Indeed, it has been shown that in a well-known 

sense the best distribution of the points of interpolation is the one in 

which the points xk occur at the zeros* of the CebySev polynomials 

cos [(n + 1) arc cos x) defined by the formula 

2k + 1 /i a i \ 
Xk = COS 2(/t-+1y" (At = 0, 1, —, n). 

The polynomials (called CebySev polynomials) which correspond to 

these points of interpolation have the property that they are uniformly 

convergent to the function which generated them, provided the latter is 

smooth, i.e., is itself continuous and has a continuous first derivative. 

The graph of such a function is a continuous curve with a continuously 

varying tangent. Figure 4 shows the distribution of the zeros of the 

CebySev polynomial for the case n = 5. 

* A zero of the function f(x) is a value xk for which f(xk) = 0. For details on 
Cebysev polynomials see §5. 
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As for arbitrary nonsmooth continuous functions, the situation is 

worse; it can be shown that 

in general there is no se¬ 

quence of points of inter¬ 

polation such that the inter¬ 

polating process will con¬ 

verge for any continuous 

function (Faber’s theorem). 

In other words, however, 

we may divide the interval 

[—1, 1] into parts, with the 

number of points of inter¬ 

polation approaching infin¬ 

ity, we can always find a 

function /(*), continuous in 

the interval, such that the 

successive polynomials with these points of interpolation will not converge 

to the function. Even for the mathematicians of the middle of the last 

century, this fact, had it been known, would have sounded paradoxical. 

Of course, the explanation is that among the continuous nonsmooth 

functions there are some extraordinarily “bad” ones, for example those 

which do not have a derivative at any point of the interval on which 

they are defined, and these supply examples for which a given interpolation 

process will not converge. Effective methods of approximation to these 

functions by polynomials can be suggested by making some changes in 

the previous interpolation process, but we will not take the time to do 

this here. 

In conclusion we note that algebraic polynomials are not the only 

means available for interpolation. There are methods for interpolation by 

trigonometric polynomials, for example, which are well developed from 

the practical and also from the theoretical point of view. 

§3. Approximation of Definite Integrals 

Interpolation of functions has wide application in questions related to 

the approximate computation of integrals. As an example, we introduce 

an approximate formula for a definite integral, namely Simpson’s rule, 

which is widely used in applied analysis. 

Let it be required to compute an approximation to the definite integral 

on the interval [a, 6] of the function /(*), whose graph is illustrated in 

figure 5. The exact value is given by the area of the curvilinear trapezoid 

aABb. Let C be the point of the graph with abscissa <• = (a + b)/2. 
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Through the points A, B, and C, we pass a parabola of degree two. As 

we know from the preceding 

section, this parabola is the 

graph of a polynomial of the 

second degree, defined by the 

equation 

P{x) = [(x - cX* - b)y0 

- 2(x - a)(x - b)yl 

+ ~ a)(x - c)y J, 

where Fig. 5. 

h = y0 = /(a). Ti = f(c). .v, = f(b). 

In the terminology of the preceding section, we may say that the 

second-degree polynomial P(x) interpolates /(x) at the points with 

abscissas a, c, b. If the graph of the function f(x) on the interval [a, b] 

does not change too violently and the interval is not large, then the 

polynomial P(x) will everywhere differ little from f(x); this, in turn, 

implies that their integrals taken over [a, b] will also differ little from 

each other. On this basis we may assume these integrals are approximately 

equal, 

£/(*) dx % P(x) dx, 

or, as it is customarily stated, the second integral is an approximation 

to the first. Simple computations, which we leave to the reader, show that 

| (x — c)(x — b) dx = ^ ft, — J (x — o)(x — b) dx = ^ h3, 

J (x - a)(x -c)dx = 1113. 

Hence 

J* Pi*) dx = * l/(a) + 4(fc) + Kb))- 

Thus the definite integral may be computed by the following approxi¬ 

mation formula: 

J*y(x) dx**h- [f(a) + 4f{c) +mi 

This is Simpson’s formula. 
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As an example, let us use this formula to compute the integral of sin x 

on the interval [0, n]. In this case 

h = -2, = sin 0 = 0, /(c) = sin ^ = 1, fib) = sinw = 0, 

and consequently (h/3)[f(a) + Af(c) +f(b)] = = 2.09 •••. On the other 

hand the integral can be found exactly 

f. sin x dx = — cos x = 2. 

The error does not exceed 0.1. 

If the interval [0, n] is decomposed into two equal parts and on each 

of these our formula is applied separately, then we get 

J" sin x dx as ^ [sinO + 4 sin ^ + sin = ^ (4 ** 1-001, 

f sin x dx fa 1.001. 
•'»/* 

In this manner 

f sin x dx fa 2.002 ; 
J n 

and now the error is considerably less than 0.002. 

In practice, in order to compute approximately the definite integral 

of a function f(x) on [a, b] we divide the interval into an even number n 
of parts by the points a = x0 < xt < ■•• < x„ = b and successively 

apply Simpson’s rule to the segment [x0, xj, and then to the segment 

(x2,xj and so forth. As a result we have the following general formula of 

Simpson: 

f f(x) dx fa b-—^ [/(*0) + 4/(x,) + 2/(Xj) + 4/(x„) + — +/(x„)]. 
J“ 3" (6) 

Let us now give without proof the classical estimate for the error. If on 

the interval [a, b] the function/(x) has a fourth derivative which satisfies 

the inequality |/lv(x) | < M, then the following estimate holds 

| ff(x)dx-Uf) 
< m - a? 
" 180/i4 

(7) 

Here by L(J) we denote the right side of formula (6). In this case the 

error will be of order n~*.* 

* If a certain quantity o« , depending on n = I, 2, —, satisfies the inequality 
| o, | < C/n‘, where C is constant independent of n, then we say that it is of order n~*. 
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We could have decomposed the interval [a, b] into n equal parts and 

taken as our approximation to the integral the sum of the areas of the 

rectangles drawn in figure 6. Then we would get an approximation formula 

from the rectangles* 

f Ax) dx b—^- [/(*0) +/(*!> + — +/(*„_,)] • (8) 
J a n 

ip in 
mi 
>0 X, xz *n-t , 

Fig. 6. 

It may be shown that the order of error here is n~*, provided the function 

has a second derivative that is bounded on the interval [a, A]. We may 

also take as an approximation the sum of the areas of the trapezoids 

drawn in figure 7 and get the trapezoidal formula 

f/(x) dx * [f(x0) + 2Axt) + - + 2AX'-t) +f(x„)\ (9) 

with order of error /r2, provided the function has a bounded second 

derivative. 

It is usually said that Simpson's formula is more exact than the 

trapezoidal and rectangular formulas. This statement requires amplifi- 

* In this case x, , x,, —, are the centers of the equal parts of the interval [a, 6), 
and not points of division as in formulas (6) and (9). 
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cation, without which it will not be true. If we know only that a function 

has a first derivative, then the guaranteed order of approximation for 

each of the three methods is alike equal to n~l\ in this case Simpson’s 

formula has no essential advantage over the rectangular and trapezoidal 

formulas. For functions that have a second derivative, it is guaranteed 

that the approximations by the trapezoidal formula and by Simpson 

formulas are each of order nr2. But if the function has a third and fourth 

derivative, then the order of the error is still equal to n~* for the rectan¬ 

gular and trapezoidal formulas, but for Simpson’s formula it is equal to 

n~3 and nr* respectively. But the order n~4 for Simpson’s formula proves 

in its turn to be the best possible result; in other words, for functions 

that have derivatives of higher order than the fourth, the order of error 

remains equal to n~*. Thus, if we are given a function that has a derivative 

of fifth order and wish to make use of this fact to obtain an approximation 

of order rr\ we need a new method of approximation to the definite 

integral, different from Simpson’s formula. To explain how it must be 

constructed, we note the following. 

The trapezoidal and rectangular formulas, as is easily shown, are 

exact for polynomials of the first degree; this means that substitution in (9) 

of the function A + Bx, where A and B are constants, leads to exact 

equality. In the same way Simpson’s formula proves to be exact for 

polynomials of the third degree A + Bx + Cx2 + Dx3. The gist of the 

matter lies in this fact. Let us suppose that we have divided the interval 

[a, b] into n equal parts and on each part have used a method of ap¬ 

proximation, the same on each part, which is exact for polynomials 

A + Bx + ••• + Fxm~l of degree m — 1. Then the error of the approxi¬ 

mation for every function which has a bounded mth derivative will be 

of order n~m, and if this function is not a polynomial of degree m — 1, 

then this order cannot be increased even for functions which have 

derivatives of much higher order. 

Our present remarks emphasize the importance of finding the simplest 

possible approximate methods of integration that are exact for poly¬ 

nomials of a given degree. This question, on which the present-day 

literature is quite large, has interested mathematicians for a long time. 

Here we can only refer to certain classical results. 

Let the function p(x) be given. We are asked how to distribute on the 

interval [—1, 1] the points of division x,, •••, xm and how to choose the 

number K, so as to satisfy the equation 

f Rx)p(x)dx = K^Axi), 

for every polynomial /(x) of degree m. 
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It can be shown that for p(x) = (1 —x*)-1 the problem is solved if 

K = nlm, and x, are the zeros of the CebySev polynomial cos m arc cos x 
(cf. §5). 

For/>(*) = 1, CebySev gave a solution of the problem form = 1,2, ”,7. 

For m = 8 the problem has no solution: the points of division may be 

found but they are complex. For m = 9 it again has a solution. However, 

as S. N. BernSteln showed, for any m > 9 the problem has no solution 

(the points of division lie outside the interval [—1, +1]). 

A quadrature formula that is exact for polynomials of degree n can be 

constructed very simply by means of Lagrange’s formula (4). If we 

integrate its left and right sides on the interval [a, b], we obtain 

C Pn(x)dx = J,pJ(xk\ (10) 
J n k-0 

where 

f* (x-*0)-M*--*»♦«)•••(*-*.) dx 
' n (Xk - xn) ••• (xk - x*_,X** - xk+1) — (xk - x„) 

(k = 0, 1, 

Consequently, equation (10) is valid for all polynomials of degree n, and 

thus the quadrature formula 

( /(x) dx 2) 
J » 0 

is exact for all polynomials of degree n. 
When 

a + b 
x0 = a, *i = 2 ’ 

xt = b. 

this formula reduces, as we have seen earlier, to Simpson’s formula. 

The distribution of the points of interpolation xk (k = 0, 1, •••, ri) in 

the interval [a, b) may be changed. For every distribution of the points 

there will be a corresponding quadrature formula. 

Gauss, the famous German mathematician of the last century, showed 

that the interpolation points xk may be distributed in such a manner 

that the formula will be exact for all polynomials not only of degree n, 
but also of degree 2n + 1. 

The polynomial 

Antl(x) = (x — x„)(x — x.) ••■(* — x„) 
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of degree n + 1, arising from Gauss’s points of division xk, has a 

remarkable property: For any polynomial P(x) of degree less than n + I, 

we have the equation 

f P(x) dx = 0. 
J a 

In other words, the polynomial A„tl(x) is orthogonal on the interval 

[a, b] to all polynomials of degree not greater than n. The polynomials 

A„^(x) we called the Legendre polynomials (corresponding to the interval 

[«. *])■ 

§4. The CebySev Concept of Best Uniform Approximation 

Statement of the question. CebySev came to the idea of best uniform 

approximation from a purely practical problem, since he was not only 

one of the greatest mathematicians of the last century, creating the basis 

for a number of mathematical disciplines that are widely developed at 

present, but was also a leading engineer of his time. In particular, 

CebySev was very much interested in questions of the construction of 

mechanisms producing a given trajectory of motion. We will now explain 

this idea. 

Let the curve y = f(x) be given on the interval a ^ x < b. We wish 

to construct, subject to specific technical requirements, a mechanism such 

that a certain one of its points will describe this curve as exactly as 

possible when the mechanism is in operation. CebySev solved the problem 

as follows. First of all, looking for the solution as an engineer, he 

constructed the required mechanism in such a manner as to get a rough 

approximation to the required trajectory. Thus, a certain point A of the 

mechanism, admittedly not yet in its final form, would describe the curve 

y = <Kx), (11) 

resembling the required curve y = f(x) only in its general features. The 

mechanism so constructed consists of separate parts, gears, levers of 

various kinds, and the like. All of these have specific measurements 

<*o .“i .“m . (12) 

which completely describe the mechanism, and consequently the curve (11). 

They are the parameters of the mechanism and of the curve (11).* Thus 

* Details of the calculations for mechanisms of this sort may be found in the pub¬ 
lication “The Scientific Heritage of P. L. CebySev,” Volume II, Academy of Sciences 
of the USSR, 1945. 
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the curve (11) depends not only on the argument x, but also on the 

parameters (12). To any assigned system of values of the parameters will 

correspond a specific curve, whose equation may be conveniently written 

in the form 

y = <Hx;a0,a1 , ■■■ ,am). (13) 

It is customary to say in such cases that we have obtained a family of 

functions (13), defined on the interval a < x < b and depending on the 

m + 1 parameters (12). 

For the further solution of his problem CebySev worked as a pure 

mathematician. He proposed, in a perfectly natural way, to take as the 

measure of the deviation of the function f{x) from the approximating 

function (/>(*; a0, a,, , a*,) the magnitude 

11/ -<*H = .max \f(x) - *m)\, (14) 

equal to the maximum of the absolute value of the difference f(x) 
—<f>(x; <*„ , a,, •••, am) on the interval a ^ x < b (figure 8). This quantity 

is obviously a certain function 

ll/-<*ll = F(c0,ai,-,O (15) 

of the parameters a„, a,, —, otm . The problem is now to find those 

values of the parameters for which the function (15) is a minimum. 

These values define a function 

<f>, which it is customary to 

describe as the best uniform 

approximation of the given 

function y = f(x) among all 

possible functions of the given 

family (11). The magnitude 

F(po, «i» —,«») for these val¬ 
ues of the parameters is called 

the best uniform approximation 
of the function f(x) on the 

interval [a, b] by means of the 

functions of the family (13). It Fig. 8. 

is usually denoted by the sym¬ 

bol E„(f). The term “uniform” is often replaced, especially in non-Soviet 

literature, by the term “CebySev.” They both emphasize the specific 

character of the approximation, since other types of approximation are 

of course possible; for example, one may speak of the best approximation 

to f(x) by functions from a given family in the sense of the mean square. 

This subject will be discussed in §8. 
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CebySev first discovered the various laws which hold for the type of 

approximation we are discussing here and found that in many cases the 

function^ which is the best uniform approximation to f(x) on the interval 

[a, b] has the remarkable property that for it the maximum (15) of the 

absolute value of the difference 

f(x) —<f>(x; 

is attained for at least m + 2 points of the interval [a, b] with successively 

alternating signs (figure 9). 

We have no space here for an exact formulation of the conditions 

under which this proposition is valid and refer our better prepared readers 

to the article of V. L. Gonfiarov “The theory of the best approximation 

of functions” (“The Scientific Heritage of tebySev,” Volume I). 

The case of approximation of functions by polynomials. The cited in¬ 

vestigations of CebySev are especially important for the general theory 

of approximation when ap¬ 

plied to the question of 

approximating an arbitrary 

function f(x) on a given in¬ 

terval [a, b] by polynomials 

P*(x) = a0 + OjX + a2x* 

+ ••• + anxn of given degree 

n. The polynomials P„(x) of 

degree n constitute a family 

of functions depending on 

the n -f 1 coefficients as pa¬ 

rameters. As may be shown, 

the theory of CebySev is fully applicable to polynomials, so that if we 

wish to make the best uniform approximation to the function f(x) on 

the segment [a, b] by a polynomial P„(x) chosen from all possible poly¬ 

nomials of the given degree n, then we need only find all those values 

of x on this interval for which the function |/(a:)— P„(x) \ assumes its 

maximum L on [a, b\. If among them we can find n + 2 values 

xy, Xj,... , x„+2, such that the difference f(x) — P„(x) successively 

changes sign 

f(x,)-P„(Xy)= ± L, 

f(xt)-Pn(xt)= ± L, 

/(*„+i) - P«(xn-z) = ± (-1)"+1 L, 
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then Pn(x) is the best polynomial, and otherwise not. For example, the 

solution of the problem of best 

uniform approximation by poly¬ 

nomials P,(x) = p + qx of the 

first degree to the function /(x) 

illustrated in figure 10 consists of 

the polynomial p0 + q^x whose 

graph is a straight line parallel to 

the chord AB and dividing into 

equal parts the parallelogram 

enclosed between the chord and 

the tangent CD to the curve 

y = /(x) which is parallel to that chord, since the absolute value of the 

difference /(x)— (p0 + q„x) obviously assumes its maximum for the 

values x0 = a, x,, and xt = b, where x, is the abscissa of the point of 

tangency F, and for these values the difference itself successively changes 

sign. To avoid misunderstanding, we note that we are speaking of a 

curve that is convex downward and has a tangent at every point. In this 

example £,(/) is equal to half the length of any one of the (equal) segments 

AC, BD, or GF. 

§5. The CebySev Polynomials Deviating Least from Zero 

Let us consider the following problem. It is required to find a polynomial 

P„-i(x) of degree n — 1 which is the best uniform approximation on the 

interval [—1, 1] to the function xn. 
It turns out that the desired polynomial satisfies the equation 

xn — P„-i(x) = * cos n arc cos x. (16) 
2n 1 

This fact follows directly from CebySev’s theorem, if we prove, first that 

the right side of (16) is an algebraic polynomial of degree n with the 

coefficient of x" equal to one; second, that its absolute value on the 

interval (—1, +1] assumes its maximum, equal to L = 1/2"* *, at the 

n + 1 points xk = cos kn/n (k = 0, 1, •••, n); and third, that it changes 

sign successively at these points. 

The fact that the right side of (16) is a polynomial of degree n with 

coefficient of xn equal to one may be proved as follows. 

Let us assume that for a given natural number n we have already 

proved that 
cos n arc cos x = 2B-1[xn — (?„-!(*)]'• 

— Vl — x2 sin n arc cos x = 2B-1[xn+1 — Q„(x)], 
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where and Qn are algebraic polynomials of degree n — 1 and n, 
respectively. Then similar equations will also be valid for n + 1, as is 

easily established by consideration of the following formulas: 

cos (n + 1) arc cos x = x cos n arc cos x — V\ — x* sin n arc cos x; 

— V l — x2 sin (n + 1) arc cos x 

= —x V l — x2 sin n arc cos x + (x* — 1) cos n arc cos x. 

But our equations for n = 1 are true, since 

cos arc cos x = x, 

— V\ — x2 sin arc cos x = x2 — 1. 

Consequently, they are true for any n. 
The right side of (16) is called the Cebysev polynomial of degree n 

deviating least from zero, since CebySev was the first to state and solve 

this problem. The first few of these polynomials are 

Ux) = 1, 

T,(x) = 

Ux) = U2x2 - I), 

7j(*) = 4(4^ — 3jt), 

Ux) = |(8*«-8x*+ I), 

T„(x) = ^(I6x5 — 20X3 + 5x). 

We have already seen the important role of the CebySev polynomials 

in questions of interpolation and of approximate methods of integration. 

Let us make some further remarks on interpolation. 

From the fact that the difference f(x) — Pn(x) between an arbitrary 

function /(x) and its best approximating polynomial Pn(x) changes sign 

at n + 2 points, it follows from the properties of continuous functions 

that P„(x) agrees with f(x) at n + 1 specific points of the interval [a, b]\ 
i.e., Pn(x) is an interpolating polynomial of degree n for f(x) with a certain 

choice of points of interpolation. 

In this way the problem of the best uniform approximation of a con¬ 

tinuous function y(x) becomes one of choosing, on the interval [—1, 1], 

a system x0,x,, •••, x„ of points of interpolation such that the cor¬ 

responding interpolating polynomial of degree n will have a deviation 

11/ — Q II = ma\xf(x) — Q(x) of least possible value. Unfortunately, the 

required points of division are often difficult to find in practice. Usually 

it is necessary to solve the problem in some approximate way, and here 
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the CebySev polynomials play a special role. It turns out that if, in par¬ 

ticular, the points of interpolation are taken to be zeros of the polynomial 

cos (a + 1) arc cos x (i.e., the points where this polynomial is equal to 

zero), then the corresponding interpolating polynomial, at least for large n, 
will give a uniform deviation from the function (if it is sufficiently smooth) 

which differs little from the corresponding deviation of the best uniform 

approximation to the function by a polynomial. The somewhat vague 

expression “differs little” can be replaced, in a number of important 

characteristic cases, by very exact quantitative estimates, which we will 

not establish here. 

Returning to the CebySev polynomial, let us consider it in the form 

T„(x) = M cos n arc cos x (—1 ^ x ^ 1), where M is some positive 

number. Obviously, on the interval [—1, 1] its absolute value does not 

exceed the number M. Its derivative is 

. nM sin n arc cos x 
T„(x) =-. -, 

V1 - x* 

which on the interval [—1, 1] satisfies the inequality 

Vl — x* 

It turns out that this inequality is true for all polynomials P„(x) of degree n 
which do not exceed the number M in absolute value on the interval 

[—1, 1]; i.e., for the derivative of any such polynomial on the interval 

[—1, 1] we have the inequality 

Pn(x) 1 ^ 
nM 

VI -x* 

This inequality is to be credited to A. A. Markov, since it follows 

directly from results of his which even go somewhat further. Markov 

himself obtained it in connection with a question suggested to him by 

D. I. Mendeleev. 

In 1912, S. N. BernSteln obtained a similar inequality, which bears 

his name, for trigonometric polynomials and by using these inequalities 

first showed how to establish the differentiability properties of a function 

if one knows how fast it is approached by its sequence of best approxi¬ 

mations. Results of this kind concerning differentiable functions are given 

in §§6 and 7. 



288 XU. APPROXIMATIONS OF FUNCTIONS 

§6. The Theorem of Weierstrass; the Best Approximation to a 

Fnnction as Related to Its Properties of Differentiability 

The Weierstrass theorem. If we apply the general definition, given in 

§4, of best approximation to a function to the case of approximating 

polynomials, we are led to the following definition. The best uniform 

approximation to the function f(x) on the interval [a, b] by polynomials 

of degree n occurs when the (nonnegative) number £„(/), is equal to the 

minimum of the expression 

max :!/(*) - Pn(x)\ = \\f-P„\\, 

taken over all possible polynomials P„(x) of degree n. 
Independently of whether or not we are able to find the exact poly¬ 

nomial that best approximates the given function f(x), it is of great 

practical and theoretical interest to estimate the quantity £„(/) as closely 

as possible. In fact, if we wish to approximate the function / by a poly¬ 

nomial with accuracy 8, in other words, in such a way that 

\f(x)-Pn(x)\ < 8 (17) 

for all x in the given interval, then there is no sense in choosing it from 

the polynomials of degree n for which £„(/) > 8, since for this n there 

will certainly not be any polynomial P„ for which (17) holds. On the 

other hand, if it is known that £„(/) < 8, then it makes sense for such 

n to look for a polynomial P„(x) which will approximate f(x) with 

accuracy 8, since such polynomials evidently exist. 

The properties of the best approximating functions of various classes 

have been the subject of deep and careful study. First of all we note the 

following important fact. 

If a function f(x) is continuous on the interval [a, b], then its best 
approximation E„(f) tends to zero as n increases to infinity. 

This is the theorem proved by Weierstrass at the end of the last century. 

It has great significance, since it guarantees the possibility of approximating 

an arbitrary continuous function by a polynomial with any desired 

accuracy. As a result, the set of all polynomials of any degree bears to 

the set of all continuous functions defined on the interval exactly the 

same relation as the collection R of rational numbers bears to the collection 

H of all real (rational and irrational) numbers. In fact, for every irrational 

number a and arbitrarily small positive number e, one can always find 

a rational number r satisfying the inequality | a — r\ < e. On the other 

hand, if f(x) is a function continuous on [a, b] and e is an arbitrarily 
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small positive number, then by Weierstrass’s theorem there will exist an 

algebraic polynomial P„(x) such that for all x from the interval [a, b] 

we have |/(x) — /*„(jc)| < e. Consequently, the best approximation 

£„(/) to a continuous function tends to zero for n -* oo. 

Let us illustrate the theorem of Weierstrass in the following way. 

Given the graph of an arbitrary continuous function (figure 9) defined 

on the interval [a, b], and an arbitrarily small positive number c, let us 

surround our graph with a strip of height 2e in such a way that the graph 

passes through the center of the strip. Then it is always possible to choose 

an algebraic polynomial 

P»(x) = fl0 + a,* + - + anxn, 

of sufficiently high degree such that its graph lies entirely inside the strip. 

We make the following remark. As before, let f(x) be an arbitrary 

function continuous on [a, b], and let P„(x) (n = 1, 2, •■•) be the poly¬ 

nomials which are the best uniform approximation to it. It is easy to see 

that the function f(x) may be represented in the form of a series 

/(*) = PM + [/>*(*)- />,(*)] + (/>3(x)- PM) + - , which is uni¬ 

formly convergent to f(x) on [a, ft]. This follows from the fact that the 

sum of the first n terms of the series is equal to Pn(x), and 

max | Rx) - PM\ = £,(/), 

while £„(/) -» 0 as n —*• oo. 

As a result we have a new formulation of Weierstrass’s theorem: 

Every function continuous on the interval [a, b] may be represented by 

a series of algebraic polynomials converging uniformly to the function. 

This result has great theoretical significance. It guarantees the possibility 

of representing an arbitrary continuous function, however originally 

given (for example, by means of a graph), in the form of an analytic 

expression. (By an analytic expression we mean an elementary function 

or else a function derived from a sequence of elementary functions by 

means of a limit process.) Historically this result finally destroyed the 

notion of analytic expression that had existed in mathematics almost up 

to the middle of the last century. We say “finally,” since Weierstrass’s 

theorem had been preceded by a series of general results of similar type, 

relating chiefly to Fourier series. Until these results were obtained, it had 

been assumed that analytic expressions were the means of representing 

the especially desirable properties that were characteristic of analytic 

functions. For example, it was usually taken for granted that analytic 

expressions were infinitely differentiable and could even be expanded in 



290 XII. APPROXIMATIONS OF FUNCTIONS 

power series. But these ideas all proved to be without foundation. A 

function may have no derivative anywhere in its interval of definition 

and yet be representable by an analytic expression. 

Fom a methodological point of view, the value of this discovery lies 

in the fact that it enables us to realize with complete clarity that at least 

in principle the methods of mathematics are applicable to an immeasurably 

wider class of laws than had been realized before. 

At the present time many different proofs of Weierstrass’s theorem are 

known. For the most part they reduce to the construction of a sequence 

of polynomials for a given continuous function f, which approximate / 

uniformly as their degree increases. The simply constructed polynomial 

fl,W = |c***(l-x)-*4)1 

will approximate a continuous function f(x) on the interval [0, 1]. It is 

called the Bernstein polynomial. With increasing n this polynomial 

converges uniformly on the interval [0, 1] to the function which generated 

it. * Here C* is the number of combinations of n elements taken A: at a time. 

We note that a theorem similar to Weierstrass’s holds in the complex 

domain. Exhaustive results in this direction are due to M. A. Lavrent’ev, 

M. V. KeldyS, and S. N. Mergeljan. 

The connection between the order of the best nniform approximation of 

a function and its differentiability properties. We note further the fol¬ 

lowing results. If a function f(x) on the interval [a, b) has a derivative 

/lrl(x) of order r which does not exceed the number K in absolute value, 

then its best approximation £„(/) satisfies the inequality 

(18) 

where cr is a constant, depending only on r (Jackson’s theorem). From 

inequality (18) it can be seen that with increasing n the quantity £„(/) 

converges to zero more rapidly for functions with derivatives of higher 

order. In other words, the better (smoother) the function, the faster the 

convergence to zero of its best approximation. BernSteln proved that in 

a certain sense the converse to this proposition is also true. 

Still better in this respect than the differentiable functions are the 

* It must be remarked that, in spite of their simplicity, the Bernstein polynomials 
are little used in practice. The explanation is that they converge very slowly, even for 
functions with good differentiability properties. 
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analytic functions. BernSteln proved that for such functions, £„(/) satisfies 

the inequality 

En{f) ^ cq", (19) 

where c and q are constants depending on the function /, and 0 < q < 1; 

i.e., £„(/) converges to zero more rapidly than a certain decreasing 

progression. He also proved that conversely the inequality (19) implies 

that the function / is analytic on [a, b]. 

We have given certain very important results that were discovered at 

the beginning of this century and have been characteristic of the direction 

taken by contemporary research in the theory of approximation of 

functions. The practical value of these results may be seen from the 

following example. 

If Qn(x) is a polynomial of degree n, which interpolates the function 

f(x) on the interval [—1, 1] at the n + 1 points of interpolation which 

are the zeros of the tebySev polynomial cos (n + 1) arc cos x, then on 

this interval one has the inequality |/(x)— Q„(x)| < c In n E„(f), where 

c is a constant independent of n, and £„(/) is the best approximation 

to the function / on [—1, 1]. In this inequality we may replace £„(/) 

by the larger expressions, occurring in (18) or (19), provided / is suf¬ 

ficiently smooth, and obtain a good estimate of the approximation of our 

interpolating polynomial. Since In n increases very slowly with increasing 

n, the order of the estimate in the given case differs little from the order 

of convergence to zero of £„(/). The advantage of interpolation by the 

CebySev points consists of the fact that for other points of interpolation 

the factor c In n in the corresponding inequality is replaced by a more 

rapidly increasing factor; this is particularly true in the case of equally 

spaced points of interpolation. 

§7. Fourier Series 

The origin of Fonrier series. Fourier series arose in connection with 

the study of certain physical phenomena, in particular, small oscillations 

of elastic media. A characteristic example is the oscillation of a musical 

string. Indeed, the investigation of oscillating strings was the origin 

historically of Fourier series and determined the direction in which 

their theory developed. 

Let us consider (figure II) a tautly stretched string, the ends of which 

are fixed at the points x = 0 and x = / of the axis Ox. If we displace 

the string from its position of equilibrium, it will oscillate. 

We will follow the motion of a specific point of the string, with abscissa 

jc„ . Its deviation vertically from the position of equilibrium is a function 
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<f>(t) of time. It can be shown that one can always give the string an initial 

position and velocity at / = 0 such that as a result the point which we 

have agreed to follow will perform harmonic oscillations in the vertical 

direction, defined by the function 

<j> = i/>(/) = A cos akt + B sin akt. (20) 

Here a is a constant depending only on the physical properties of the 

string (on the density, tension, and length), k is an arbitrary number, 

and A and B are constants. 

We note that our discussion relates only to small oscillations of the 

string. This gives us the right to assume approximately that every point 

x0 is oscillating only in the vertical direction, displacements in the 

horizontal direction being ignored.* We also assume that the friction 

arising from the oscillation of the string is so small that we may ignore it. 

As a result of these approximate assumptions, the oscillations will not 

die out. 

The possibilities of oscillation for the point x0 are of course, not 

exhausted by the periodic motions defined by the harmonic functions (20), 

but these functions do have the following remarkable property. Experi¬ 

ments and their accompanying theory show that every possible oscillation 

of the point x0 is the result of combining certain harmonic oscillations 

of the form (20). Relatively simple oscillations are obtained by combining 

a finite number of such oscillations; i.e., they are described by functions 

of the form 
n 

<f>(t) = A„ + V (Ak cos akt + Bk sin akt), 
t-1 

* This question is directly connected with the differential equation of the oscillating 
string 

which was discussed in Chapter VI. 
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where Ak and Bk are corresponding constants. These functions are called 
trigonometric polynomials. In more complicated cases, the oscillation will 
be the result of combining an infinite number of oscillations of the form 
(20) , corresponding to k = 1, 2, 3, ••• and with suitably chosen constants 
Ak and Bk, depending on the number k. Consequently, we arrive at the 
necessity of representing a given function </>(/) of period r/a, which 
describes an arbitrary oscillation of the point x0 in the form of a series 

00 

<f>(t) = A0 + ^ (/4*cos oJct + Bk sin akt). (21) 

There are many other situations in physics where it is natural to 
consider a given function, even though it does not necessarily describe 
an oscillation, as the sum of an infinite trigonometric series of the form 
(21) . Such a case arises, for example, in connection with the vibrating 
string itself. The exact law for the subsequent oscillation of a string, 
to which at the beginning of the experiment we have given a specific 
initial displacement (for example, as illustrated in figure 12) is easy to 
calculate, provided we know the expansion in a trigonometric series 
f(x) = Sr °k sin (kn/I)x, (a par- 
ticular case of the series (21)), of 
the function f(x) describing the 
t n i#i a 1 n apitt a m 

v_ , 
initial position. — 

l 

Expansion of fnnctions in a trigo¬ 
nometric series. On the basis of Fig. 12. 
what has been said there arises the 
fundamental question: Which functions of period 2n/a can be represented 
as the sum of a trigonometric series of the form (21)? This question was 
raised in the 18th century by Euler and Bernoulli in connection with 
Bernoulli’s study of the vibrating string. Here Bernoulli took the point 
of view suggested by physical considerations that a very wide class of 
continuous functions, including in particular all graphs drawn by hand, 
can be expanded in a trigonometric series. This opinion received harsh 
treatment from many of Bernoulli’s contemporaries. They held tenaciously 
to the idea prevalent at the time that if a function is represented as an 
analytic expression (such as a trigonometric series) then it must have 
good differentiability properties. But the function illustrated in figure 12 
does not even have a derivative at the point f; in such a case, how can it 
be defined by one and the same analytic expression on the whole interval 
[0,/]? 

We know now that the physical point of view of Bernoulli was quite 
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right. But to put an end to the controversy it was necessary to wait an 

entire century, since a full answer to these questions required first of all 

that the concepts of a limit and of the sum of a series be put on an exact 

basis. 

The fundamental mathematical investigations confirming the physical 

point of view but based on the older ideas concerning the foundations 

of analysis were completed in 1807-1822 by the French mathematician 

Fourier. 

Finally, in 1829, the German mathematician Dirichlet showed, with 

all the rigor with which it would be done in present-day mathematics,, 

that every continuous function of period 2n/a,* which for any one period 

has a finite number of maxima and minima, can be expanded in a unique 

trigonometric Fourier series, 

uniformly convergent to 

function. 

Figure 13 illustrates a 

function satisfying Dirich- 

let’s conditions. Its graph 

is continuous and periodic, 

with period 2n, and has one 

maximum and one minimum 

in the period 0 C x ^ 2. 

Fourier coefficients. In what follows we will consider functions of 

period 2n, which will simplify the formulas. We consider any continuous 

function f(x) of period lit satisfying Dirichlet’s condition. By Dirichlet’s 

theorem it may be expanded into a trigonometric series 

/(*) = 
00 

+ V. (Qv (22) 

which is uniformly convergent to it. The fact that the first term is written 

as aJ2 rather than a0 has no real significance but is purely a matter of 

convenience, as we shall see later. 

We pose the problem: to compute the coefficients ak and bk of the 

series for a given function/(*). 

* The function f(x) has period u> if it satisfies the equation f(x + u> ) -Ax). 
t In fact, Dirichlet's theorem also applies to a certain class of discontinuous functions, 

the so-called functions of bounded variation. For discontinuous functions, of course, 
the corresponding series is nonuniformly convergent. 
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To this end we note the following equation: 

f cos kx cos Ixdx — 0 (k # /; k, I = 0, 1, •••), 
J -v 

f sin kx sin lx dx = 0 (*,£/;*,/ = 0,1, •••), 
■' —» 

| sin *x cos lx dx = 0 (*, / = 0,1,2,—), 

I" cos2 kx dx = Tr (*=1,2,—), 
—tr 

J" sin2 Arx dx = w (*=1,2,—), 

(23) 

which the reader may verify. These integrals are easy to compute by 

reducing the products of the various trigonometric functions to their 

sums and differences and their squares to expressions containing the 

corresponding trigonometric functions of double the angle. The first 

equation states that the integral, over a period of the function, of the 

product of two different functions from the sequence 1, cos x, sin x, 
cos 2x, sin 2x, ••• is equal to zero (the so-called orthogonality property 

of the trigonometric functions). On the other hand, the integral of the 

square of each of the functions of this sequence is equal to n. The first 

function, identically equal to one, forms an exception, since the integral 

of its square over the period is equal to 27r. It is this fact which makes 

it convenient to write the first term of the series (22) in the form aJ2. 
Now we can easily solve our problem. To compute the coefficient am , 

we multiply the left side and each term on the right side of the series (22) 

by cos mx and integrate term by term over a period 27r, as is permissible 

since the series obtained after multiplication by cosmx is uniformly 

convergent. By (23) all integrals on the right side, with the exception 

of the integral corresponding to cos mx, will be zero, so that obviously 

hence 

c f(x) cos mx dx = amn. 

1 r" 
am = - f(x) cos mx dx 

TT J - 
(m = 0,1,2, •). (24) 

Similarly, multiplying the left and right sides of (22) by sin mx and 

integrating over the period, we get an expression for the coefficients 
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and we have solved our problem. The numbers am and bm computed by 

formulas (24) and (25) are called the Fourier coefficients of the function 

/<»• 
Let us take an example the function /(x) of period 2n illustrated in 

figure 13. Obviously this function is continuous and satisfies Dirichlet’s 

condition, so that its Fourier series converges uniformly to it. 

It is easy to see that this function also satisfies the condition /(—x) 

= — /(x). The same condition also clearly holds for the function F,(x) 

= /(x) cos mx, which means that the graph of F,(x) is symmetric with 

respect to the origin. From geometric arguments it is clear that 

Fj(x) dx = 0, so that am — 0 (m = 0, 1, 2, •••)■ Further, it is not 

difficult to see that the functions F3(x) — f(x) sin mx has a graph which 

is symmetric with respect to the axis Oy so that 

bm = - f F^x) dx = - f Ft(x) dx. 

But for even m this graph is symmetric with respect to the center w/2 of 

the segment [0, w], so that bm = 0 for even m. For odd m = 21 = 1 

(/ = 0, 1, 2, •••) the graph of F3(x) is symmetric with respect to the straight 

line x = n/2, so that 

= - J F£x)dx. 
n J 0 

But, as can be seen from the sketch, on the segment [0, n/2] we have 

simply /(x) = x, so that by integration by parts, we get 

x .in (II + \)x dx — ’ 

and consequently 

ftr\ = 1V (-»)' sin (21 + l)x 

(2/+D* 

Thus we have found the expansion of our function in a Fourier series. 

Convergence of the Fonrier partial sums to the generating fnnction. 

In applications it is customary to take as an approximation to the function 

/(x) of period 2rr the sum 



§7. FOURIER SERIES 297 

of the first n terms of its Fourier series, and then there arises the question 

of the error of the approximation. If the function f(x) of period 2n has 

a derivative fir>(x) of order r which for all x satisfies the inequality 

|/(,'(x)| ^ K, then the error of the approximation may be estimated as 

follows: 

\f(x)-Sn(x)\^ 
nT 

where cr is a constant depending only on r. We see that the error converges 

to zero with increasing n, the convergence being the more rapid the more 

derivatives the function has. 

For a function which is analytic on the whole real axis there is an even 

better estimate, as follows: 

I /(*) — Sn(x) | < cqn, (26) 

where c and q are positive constants depending on / and q < 1. It is 

remarkable that the converse is also true, namely that if the inequality 

(26) holds for a given function, then the function is necessarily analytic. 

This fact, which was discovered at the beginning of the present century, 

in a certain sense reconciles the controversy between D. Bernoulli and 

his contemporaries. We can now state: If a function is expandable in a 

Fourier series which converges to it, this fact in itself is far from implying 

that the function is analytic; however, it will be analytic, if its deviation 

from the sum of the first n terms of the Fourier series decreases more 

rapidly than the terms of some decreasing geometric progression. 

A comparison of the estimates of the approximations provided by the 

Fourier sums with the corresponding estimates for the best approximations 

of the same functions by trigonometric polynomials shows that for 

smooth functions the Fourier sums give very good approximations, 

which are in fact, close to the best approximations. But for nonsmooth 

continuous functions the situation is worse: Among these, for example, 

occur some functions whose Fourier series diverges on the set of all 

rational points. 

It remains to note that in the theory of Fourier series there is a question 

which was raised long ago and has not yet been answered: Does there 

exist a continuous periodic function f(x) whose Fourier series fails for 

all x to converge to the function as n = oo ? The best result in this direction 

is due to A. N. Kolmogorov, who proved in 1926 that there exists a 

periodic Lebesgue-integrable function whose Fourier series does not 

converge to it at any point. But a Lebesgue-integrable function may be 

discontinuous, as is the case with the function constructed by Kolmogorov. 

The problem still awaits its final solution. 
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To provide approximations by trigonometric polynomials to arbitrary 

continuous periodic functions, the methods of the so-called summation 

of Fourier series are in use at the present time. In place of the Fourier 

sums as an approximation to a given function we consider certain 

modifications of them. A very simple method of this sort was proposed 

by the Hungarian mathematician Fejer. For a continuous periodic 

function we first, in a purely formal way, construct its Fourier series, 

which may be divergent, and then form the arithmetic means of the 

first n partial sums 

on(x) = So(*) + SA*) + - + Sn(x) (27) 

n + 1 

This is called the Fejir sum of order n corresponding to the given function 

/(x). Fejer proved that as n = oo this sum converges uniformly to /(x). 

§8. Approximation in the Sense of the Mean Square 

Let us return to the problem of the oscillating string. We assume that 

at a certain moment /„ the string has the form y = /(x). We can prove 

that its potential energy W, i.e., the work made available as it moves 

from the given position to its position of equilibrium, is equal (for small 

deviations of the string) to the integral W = /*/'*(•*) dx, at least up to 

a constant factor. Suppose now that we wish to approximate the function 

/(x) by another function <£(x). Together with the given string, we will 

consider a string whose shape is defined by^(x), and still a third string, 

defined by the function /(x)—<f>(x). It may be proved that if the energy 

fim-fMTdx (28) 

of the third string is small, then the difference between the energy of the 

first two strings will also be small * Thus, if it is important that the 

second string have an energy which differs little from the first, we must 

* In fact, if 
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try to find a function </>'(*) for which the integral (28) will be as small 

as possible. We are thus led to the problem of approximation to a function 

(in this case /'(*)) in the sense of the mean square. 

Here is how this problem is to be stated in the general case. On the 

interval [a, b] we are given the function ^(x), and also the function 

0(x;ao,a, , ••• ,a„), (29) 

depending not only on x but also on the parameters a0, a,, •••, a„ . It is 

required to choose these parameters in such a way as to minimize the 

integral 

f l^C*) - #(■*; <*o. “i. "•> “«)12 dx. (30) 
J a 

This problem is very similar in idea to CebySev’s problem. Here also 

the idea is to find the best approximation of the function F(x) by functions 

of the family (29), but only in the sense of the mean square. It is now 

unimportant for us whether or not the difference F—<P is small for all 

values of x on the interval [a, ft]; on a small part of the interval the 

difference F— <P may even be large provided only that the integral (30) 

is small, as is the case, 

for example, for the 

two graphs illustrated in 

figure 14. The smallness 

of the quantity (30) shows 

that the functions F and 

0 are close to each other 

on by far the greater part 

on the interval.* As to 

the choice in practice of 

one method of approxi¬ 

mation or another, everything depends on the purpose in view. In the 

earlier example of the string, it is natural to approximate the function 

/'(x) in the sense of the mean square. On the other hand, the method 

of mean squares was unsatisfactory for CebySev in solving his problems 

in the construction of mechanisms, since a machine component projecting 

beyond the limits of tolerance, even if only over a very small part of the 

machine, would be quite intolerable: One such projection would spoil 

the whole machine. Thus Cebysev had to develop a new mathematical 

method corresponding to the problem which confronted him. 

* In Chapter XIX we will see that there is a profound analogy between the close¬ 
ness of the functions in the sense of the mean square and the distance between points 
in ordinary space. 
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We should state that from the computational point of view the method 

of the mean square is more convenient, since it can be reduced to the 

application of well-developed methods of general analysis. 

As an example let us consider the following characteristic problem. 

We wish to make the best approximation in the sense of the mean 

square to a given continuous function f(x) on the interval [a, ft] by sums 

of the form 
n 

X a*Mx)> 
i 

where the ak are constants and the functions <f>k(x) are continuous and 

form an orthogonal and normal system. 

This last means that we have the following equations: 

)fafadx = 0 k — / (*,/ = 1,2, 

fa4>\dx = 1 (*= 1,2.n). 

Let us introduce the numbers 

a* = f Ax) Mx) dx (k = 1,.... n). 
J a 

These numbers ak are called the Fourier coefficients of/ with respect to 

the^. 

For arbitrary coefficients ak , on the basis of the properties of orthogo¬ 

nality and normality of <f>„, we have the equation 

/ (/“ X “*&) dx = j fdx + 2) «* - 2 J) 

= (J fdx - X o?) + X _ ak)t- 

The first term on the right side of the derived equation does not depend 

on the numbers a* . Thus the right side will be smallest for those ak 
which make the second term itself small, and obviously this can happen 

only if the numbers ak are equal to the corresponding Fourier coefficients 

ak . 
Thus we have reached the following important result. If the functions 

4>k form an orthogonal and normal system on the interval [a, ft], then the 

sum 2," atk<f>k(x) will be the best approximation, in the sense of the mean 
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square, to the function /(x) on this interval if and only if the numbers a* 

are the Fourier coefficients of the function / with respect to <f>ic(x). 
On the basis of equation (23) it is easily established that the functions 

1 cos x sin x cos 2x 

'/Itt ‘\Zn yfn \Zn 

form an orthogonal and normal system on the interval [0, 2n]. Thus the 

stated proposition, as applied to the trigonometric functions, will have 

the following form. 

The Fourier sum S„(x), computed for a given continuous function f(x) 
of period 2n, is the best approximation, in the sense of the mean square, 

to the function f{x) on the interval [0, 2w], among all trigonometric 

polynomials 
n 

t«(x) = <*„ + 2) («* COS kx + pk sin kx) 

of order n. 
From this result and from Fear’s theorem, formulated in §7, we are 

led to another remarkable fact. 

Let f(x) be a continuous function of period 2n and o„(x) be its Fej6r 

sum of order n, defined in §7 by equation (27). 

We introduce the notation 

max |/(x) —crn(x)| = r)„ . 

Since the Fourier sums 5*(x) (A: = 0, 1,... , n) are trigonometric poly¬ 

nomials of order k ^ n, it is obvious that an(x) is a trigonometric poly¬ 

nomial of order n. Thus from the minimal property of the sum S„(x) 

shown previously, we have the inequality 

f [/(*) - S„(*)J* dx < f [f(x) - on(x)]2 dx 4: f r,\dx = 2^ . 
J —n J —v J —w 

Since, by Fej6r’s theorem, the quantity rjn converges to zero for n -*■ oo 

we obtain the following important result. 

For any continuous function of period 2v we have the equation 

I'JS /_ _ ^n(AT)]2 dx = 0. 

In this case we say that the Fourier sum of order n of a continuous function 

f(x) converges to f(x) in the sense of the mean square, as n increases 

beyond all bounds. 
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In fact, this statement is true for a wider class of functions, namely 

those which are integrable, together with their square, in the sense of 

Lebesgue. 

We will stop here and will not present other interesting facts-from the 

theory of Fourier series and orthogonal functions, based on approximation 

in the sense of the mean square- Important physical applications of 

orthogonal systems of functions have already been introduced in Chapter 

VI. Finally, we note that these questions are also discussed from a some¬ 

what different point of view in Chapter XIX. 
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CHAPTER XIII 
APPROXIMATION METHODS 

AND COMPUTING TECHNIQUES 

§1. Approximation and Nnmerical Methods 

Characteristic peculiarities of approximation methods. In many cases 

the application of mathematics to the study of events in the outside world 

is based on the fact that the laws governing these events have a quantitative 

character and can be described by certain formulas, equations, or in¬ 

equalities- This allows us to investigate the events numerically and to 

make the calculations which are so necessary in practical life. 

As soon as a quantitative law has been found, purely mathematical 

methods may be used to investigate it. For definiteness, let us take some 

law which is described by an equation. This may be the law of motion 

of a body in Newtonian mechanics, the law of heat conduction or the 

propagation of electromagnetic oscillations, and so forth. Such equations 

are discussed in detail in Chapters V and VI. Usually the equation has 

adjoined to it certain conditions which its solution must satisfy (in 

Chapters V and VI these are the boundary and initial conditions) and 

which define a unique solution. 

The first and most important mathematical tasks here will be the 

following: 

1. To establish the existence of a solution. Even if it seems obvious 

from the physical point of view that the problem has a solution, a 

mathematical proof of the solvability of a rigorously formulated problem 

is usually considered as the necessary evidence that the mathematical 

formulation ot the problem is a satisfactory one. In a wide class of prob¬ 

lems it is possible to establish mathematically the existence of a solution. 

2. To attempt to find an explicit expression or formula for the quantity 

303 
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which characterizes the event under consideration. Usually such an 

expression can be found only in the simplest cases. It often happens 

that the explicit expression obtained is so complicated that to make use 

of it for the desired numerical results is very difficult or even impossible. 

3. To find a procedure for constructing an approximation formula, 
which gives a solution with any desired degree of accuracy. This can be 

done in many cases. 

4. But very often it will be possible to find one or more methods for 

direct numerical calculation of the solution. 

The development of such numerical methods (many of which are 

approximate) of solving problems of science and technology has produced 

a particular branch of mathematics that at the present time is usually 

called mathematics of computation. 

The methods of computational mathematics are naturally approxi¬ 

mative, since every quantity is computed only to a certain number of 

significant figures; for example, to five, six, etc., decimal places. 

For applications this is sufficient, since knowing the exact value of 

any quantity is often unnecessary. In technical questions, for example, 

the desired quantity usually serves to define the dimensions or other 

parameters of a manufactured article. Every manufacturing process is 

only approximate, so that technical computations with an exactness 

which goes beyond the allowed “tolerances” are obviously valueless. 

So for computational purposes there is no need of exact formulas or 

of exact solutions of equations. Exact formulas and equations may be 

replaced by others that are admittedly inexact, provided they are close 

enough to the original ones that the error produced by such a change 

does not exceed given bounds. 

Later we shall return to this question of replacing one problem by 

another. At the moment, however, we merely wish to emphasize the first 

characteristic feature of computational methods, namely that by their 

very nature they can, as a rule, produce only approximate results; but 

then only such results are needed in practice. 

We now turn our attention to a second aspect of computational 

methods in mathematics. In any computation we can operate with only 

a finite number of digits and obtain all the results after a finite number 

of arithmetic operations. If we perform the computations according to 

some formula, then the latter must first have been transformed in such 

a way that it involves only a finite number of terms with a finite number 

of parameters. It is known, for example, that many functions may be 

represented as the sum of a power series 

f(x) = c0 + ctx + c**2 + — • (1) 
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Thus, the function sin x, where x is the radian measure of an angle, may 

be expanded in the power series 

To find the exact value of /(*), we would need to sum up “all” the 

terms of the series (1), but generally speaking, this is impossible. To find 

f\x) approximately, it is sufficient to take only a certain finite number 

of terms of the series. For example, it may be proved that to compute 

sin x with an accuracy of 10-s for an angle from zero to half a right angle 

it is sufficient to take the terms through x5, so that sin x is replaced by 

the polynomial 

1! 3! 5! ' 

For the numerical solution of a problem of mathematical analysis that 

consists of determining some function, we must by one means or another 

replace this problem by the problem of finding certain numerical para¬ 

meters, the knowledge of which enables us to make an approximate 

computation of the unknown function. We will illustrate this by an 

example. 

Let it be required to solve, on the interval a < x ^ b, the boundary- 

value problem for the differential equation 

Uy) -Ax) =/ + p(x) y + q(x) y -Ax) = 0 (2) 

with boundary conditions y(a) = 0, y(b) = 0. In one of the possible 

methods of solution, namely Galerkin’s method, we start with a system 

of linearly independent functions <o,(x), io2(x), •••, which satisfy the 

boundary conditions (Chapter VI, §5). This system is so chosen as to be 

“complete” in the sense that a function which is integrable on [a, b] and 

is orthogonal to all the to* (k = 1,2, •••) will be equal to zero at all (more 

exactly, at “almost all”) points of the interval. The condition that y(x) 
satisfies the differential equation (2) may be described in the form of an 

orthogonality requirement 

f [UP) ~ f K dx = 0 (k = 1,2, •••}. (3) 
J a 

Let us assume that the solution of the problem may be expanded in 

a series in the <o* 

y(x) = ai<o,(x) + a2w2(x) + —. (4) 
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We now seek to determine the conditions that must be satisfied by the 

coefficients ak. For arbitrary ak the sum of the series (4) will satisfy the 

boundary conditions. It remains to choose the ak in such a way that 

equations (3) are satisfied. The coefficients ak form an infinite set, and 

to compute all of them is generally speaking impossible. For simplification 

we retain only a finite number of terms on the right side of (4) and so 

obtain the expression 

y(x) a,a>,(*) + — + a„w„(x). (5) 

We cannot hope to satisfy equation (3) for all wk (k = 1, 2, •••) since 

we have only n arbitrary parameters ak (k — 1,2, , n). Thus we are 

forced to give up an exact solution of the differential equation (2). But 

it is natural to expect that the sum (5) will satisfy this differential equation 

with a small error if n is taken sufficiently large and condition (3) is 

satisfied for the first n of the functions to*. This leads to the equations 

of Galerkin’s method 

f \l ( X akWk) ~A w*dx =° 0 =1.2, -, n). 

After finding the ak from these equations, we construct an approximate 

expression for the function (5). 

A similar simplified formula holds for the solution of variational 

problems by the Ritz method, in approximate harmonic analysis of 

functions and in many other questions. 

We give another example of simplification of an equation. Let it be 

required to find a function y of one or several arguments by solving 

some functional equation, for example, a differential or an integral 

equation. As parameters defining the function y let us choose its values 

j",, , •••, yn at some system of points (on a net). 

The functional equation must then be changed to a system of numerical 

equations containing n unknown quantities yk (k = 1, •••, n). Such a 

replacement may, as a rule, be made in many ways. Here it is always 

necessary to take pains that the solution of the numerical system differs 

sufficiently little from the solution of the functional equation. 

We give several examples of this sort of replacement. When we solve a 

differential equation of the first order / = f(x, y) by Euler’s method, 

we replace this equation by a recursive numerical scheme which enables 

us to make an approximate calculation of each succeeding value of the 

unknown function from the previous value (Chapter V, §5): 

yn+i = y« + (*„+! — xn)f(x„ , y„). 
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For an approximate solution of the Laplace equation 

. dlu dlu 

*u = Ss+W~0 

by the net method, we replace this equation by a linear algebraic system 

(Chapter VI, §5) 

u(x + h,y) + u(x, y + h) + u(x — h, y) + u(x, y — h) — 4u(x, y) = 0. 

Let us consider one more example of such a kind. Let it be required to 

solve numerically the integral equation 

y(x) = f{x) + f K(x, s) ><*) ds. (6) 
J a 

The points at which we wish to find the values of the unknown function 

y(x) will be denoted by x,, x2, •••, x„ . In order to set up the system of 

numerical equations replacing (6), we require that equation (6) be 

satisfied not for all the x on the interval a < x < b but only at the 

points x, (/ = 1, 2, •••, n) 

y(x,) = /(*,) + f K(x,, s) y(s) ds. 
J a 

Then we replace the integral by any approximate quadrature (by the 

trapezoidal rule, Simpson’s rule, or some other)* with the points of 

division x,, , x„ 

n 

, s) v(*) ds ss 2) AaK(Xi, Xj) y(Xj). 

To determine the desired values of y{x(), we have the system of linear 

algebraic equations 

yixd = .fix,) + 5) AaK(Xi, yi) ,v(JC>) (' = 1, 2, n). (7) 
j-i 

We note that all the methods considered of seeking an unknown 

function have involved determining certain parameters which define it 

Cf. Chapter XII, §3. 
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approximately. Thus the exactness of these methods depends on how 

well the function is defined by this system of parameters; for example, 

how well it may be approximated by an expression of the form (7) or 

represented by its values at a certain system of points. Questions of this 

kind constitute a particular branch of mathematics, called the theory of 

approximation of functions (Chapter XII). From this it can be seen that 

the theory of approximation has very great value for applied mathematics. 

Convergence of approximate methods and an estimate of error. Let us 

examine in more detail the requirements for a computational method. 

The simplest and most basic of these requirements is the possibility of 

finding the desired quantity with any chosen degree of accuracy. 

The required exactness of a computation may change greatly from 

one problem to another. For certain rough technical computations, two 

or three decimal places will be sufficiently exact. Most engineering 

computations are carried out to three or four decimal places. But con¬ 

siderably greater exactness is often required in scientific calculations. 

Generally speaking, the need for greater accuracy has increased with 

the passage of time. 

Particularly important, therefore, are the approximation methods and 

processes that allow one to get results with as great a degree of accuracy 

as desired. Such methods are called convergent. Since they are encountered 

most often in practice and since the requirements they must satisfy are 

typical, we will keep them in mind in what follows. 

Let x be the exact value of a desired quantity. For every such method 

we may construct a sequence of approximations, x,, x2, , x„ , ••• to the 

solution x. 
After showing how the approximations are constructed, the first 

problem in the theory of the method is to establish the convergence of 

the approximations to the solution x„ -*• x, and if the method is not 

always convergent, to set out the conditions under which it will converge. 

After the convergence is established there arises the more difficult and 

subtle problem of an estimate of the rapidity of convergence, i.e., an 

estimate of how rapidly x„ converges to the solution x for n -* oo. Every 

convergent method theoretically guarantees the possibility of finding the 

solution with any desired degree of accuracy, if we take an approximation 

xn with sufficiently large index n. But, as a rule, the larger the n, the 

greater the labor required to calculate x„ . Thus, if x„ converges slowly 

to x, then to get the needed accuracy it may be necessary to make 

enormous computations. 

In mathematics itself, and especially in its applications, many cases 

are known of a convergent process for finding the solution x, which would 
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require more computational work than can be carried out even on present- 

day high-speed computers.* 

Insufficiently fast convergence is one of the criteria by which the 

disadvantages of a given method are judged. But this criterion is, of 

course, not the only one and in comparing methods one must consider 

many other sides of the question, in particular the convenience of making 

the computations on machines. Of two methods we sometimes prefer 

to use the one with somewhat slower convergence, if the computations 

by this method are easier to carry out on a computing machine. 

The error produced by replacing x with its approximate value x„ is 

equal to the difference x — x„ . Its exact value is unknown, and in order 

to estimate the rapidity of convergence, we must find an upper bound 

for the absolute value of this difference, i.e., a quantity A„, such that 

\x — x„\ ^ An, 

which we call an error estimate. Later we give examples of estimates A„ . 
Consequently, the usual method of judging the rapidity of convergence 

of a method is to examine how fast the estimate A„ decreases with 

increasing n. In order that the estimate reflects the actual degree of 

nearness of x„ to x, it is necessary that A„ differ little from | x — xn |. Also 

the estimate A„ must be effective, i.e., be such that it can itself be found, 

otherwise it cannot be used. 

Let x be a numerical variable whose value we wish to determine from 

some equation. We assume that our equation reduces to the form 

*=<A(*)- (8) 

* Let us mention some simple examples of slowly converging computational processes. 
It is known that the series 

converts to the natural logarithm of the number 2. We can find In 2 approximately 
by means of this series, by computing the sum 

s. = 

of the first n terms for sufficiently large n. But it may be shown that to compute In 2 
with an error less than half of the fifth significant figure, we must take more than 
100,000 terms of the series. To find the sum of such a number of terms, if we are using, 
for example, only a desk computer, would be very laborious. Another familiar example 
is the series 

I I 1-3 1-3-5 1 -3-5-7 

y/\~ 2-l!+2»-2! 2* • 3! + 2‘ • 4! 

Its convergence is so slow that to compute 1/'J'l with accuracy of 10~s, we would need 
to take about 10'° terms, which is difficult even with high-speed machines. 
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To this equation we apply the method of iteration, which is also often 

called the method of successive approximations. To explain the method 

itself and the estimates connected with it, we will examine the case of one 

numerical equation, although the method also applies to systems of 

numerical equations, to differential equations, integral equations, and 

many other cases. The application of the method to ordinary differential 

equations has already been illustrated in Chapter V, §5. 

We will assume that we have somehow found an approximate value 

x0 for a root of the equation. If x0 were an exact solution of equation (8), 

then after substituting it in the right side <f>(x) of the equation we would 

get a result equal to x0. But since x0 , generally speaking, is not an exact 

solution, the result of the substitution will differ from x0. Let us denote 

it by x, = <f>(x0). 
In order to establish in which cases x, will be nearer to the exact 

solution than x0, we turn to a geometric interpretation of our problem. 

Let us consider the function 

y = <£(*)• (9) 

We choose a numerical axis and represent the numbers x and y by points 

of this axis. Equation (9) assigns to every point x a corresponding point y 
on the same axis. It may be regarded as a rule that produces a point 

transformation of the numerical axis into itself. 

Consider the segment [x,, x2J on the numerical axis. By the trans¬ 

formation (9) the points x, and x2 will be transformed into the points 

yi = <t>(xi) and yt = -£(x2). 

The segment [x,, x2] is transformed into the segment [y,, >»2]. The ratio 

k _ \y%-yt\ 
| x2 - x, 1 

is called the “coefficient of dilation” of the segment under the trans¬ 

formation. If A: < 1, we will have a contraction of the segment. 

We return to equation (8). It says that the desired point x must be 

transformed into itself under the transformation (9). Thus solving equation 

(8) is equivalent to finding a point on the numerical axis which is trans¬ 

formed into itself under the transformation (9), i.e., remains fixed. 

We now consider the segment [x, x0], one end of which lies at the 

fixed point x and the other at the point x0 . Under the given transformation 

x„ goes into x, and the segment [x, x0] into the segment [x, xj. If the 

function <f> has the property that under transformation (9) every segment 
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is contracted, then x, will certainly be closer than x0 to the root of 

equation (8). 

Since we wish to obtain approximations which converge to the exact 

solution of (8), we make the same transformation many times in succession 

on the right side of (8) and construct the sequence of numbers 

*1 = f *o)> *2 = 4>(Xl), — . *n+1 = f *»)> — • (10) 

Here we will prove that the sequence of approximations (10) converges.* 

Let us assume that the function f x) is defined on a certain segment 

[a, b] and that equation (9) gives a transformation of [a, b] into itself, 

i.e., for every x belonging to [a, b], y = <f>(x) will also belong to [a, b]. 

We will also assume that the initial approximation x0 is in [a, b]; all the 

successive approximations (10) will then also lie in [a, b]. Under these 

conditions the following theorem is true. If f x) has a derivative f 

satisfying the condition 

If I < I 

on [a, ft], then the following proposition holds. Equation (8) has a root x* 

in the segment [a, b\. The sequence (10) converges to this root, and the 

rapidity of convergence is characterized by the estimate 

I X* - x„ I < 
1 - q 

where m = | x0—fx„)| = | x0 — x, |. Equation (8) has a unique root 

in [a, b]. 

To prove these statements, we estimate the difference x*— x,. If 

Taylor’s formula is applicable (Chapter II, §9, (26)), we obtain, for n = 0 

= f *i) — <K*o) = f(fo)(*i — *<>)• 

Then lies between x, and x0 and so belongs to the segment [o, b]. 

Thus | f (f0)l < q and 

\x, — x, | < q I x, — x0 | = mq. 

Similarly 

I x3 — x* | = I f x*) — f Xj)| = I f (f,X*2 — X,)| < q I Xi — x, I ^ mq\ 

Continuing these estimates, we have, for every value of n, the inequality 

I *n+l — I < mqn- (11) 

* Because of the geometric interpretation, this theorem and others like it are often 
called contraction theorems. 
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We now establish the convergence of the sequence x„ . To this end we 

consider the auxiliary series 

*0 + C*l xo) + (** xl) + + (xn • (12) 

The partial sum of the first n + 1 of its terms is equal to 

■*»+! = *0 + (*, — *0) + — + (*n — -^n-0 = • 

Thus lim^,, sn+1 = lim„_„ x„ and the existence of a finite limit for x„ is 

equivalent to the convergence of the series (12). We compare the series 

(12) with the series 

I *o I + m + mq + ••• + mqn~l + —. 

From the estimate (11) the terms of the series (12) are not greater in 

absolute value than the corresponding terms in the latter series. But this 

series, except for its first term | x01, is a geometric progression with 

common ratio q, and since q < I, the series converges. Series (12) is 

thus also convergent, and the sequence (10) is convergent to some finite 

limit x* 
lim x. = x*. 
n-»oo 

Obviously x* belongs to the segment [a, ft], since all the x„ belong to it. 

If in the equation xn+, = </>(*„) we pass to the limit as n -*■ oo, then in 

the limit we get the equation x* = <f>(x*), which shows that x* actually 

satisfies equation (8). We now estimate how close x„ is to x*. We choose 

x„ and any following approximation x„+p 

I xn+p xn I = I (xn+v xn+p-1) (-^n+p-l xn+v-i) "F "F (xn+l xn) I 

< mqn+p~l + mqn+p-i + ••• + mq” 

mqn — mqp+n 

1 - q 

Hence, for p -*■ oo, from x„+p -*■ x* and qn+p —► 0 it follows that 

I** -*nl <-r^—qn- 
1 - q 

It remains to prove the statement on uniqueness. Let x' be any solution 

of the equation on [a, ft]. We estimate the difference x' — x* 

\x' — x*\ = \ 4ix') -<KX*)\ = \<t>'(i)(x' - x*)\ < 9 I —X* I, 
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from which 

(1— q)\x'-x*\ <0. 

Since 1 — q > 0, this inequality is possible only for | x' — x* | = 0, 

which means that x is identical with x*. 
The theorem not only exhibits sufficient conditions for the convergence 

of the method of iteration but also allows us to estimate the necessary 

number of steps in the computation, i.e., how large n must be taken to 

obtain the required accuracy when the exact solution x* is replaced by x„ . 
Such an estimate is effective, since the quantities m and q appearing in 

the inequality | x* — x„ | ^ (m/1 — q)qn may in fact be found by in¬ 

vestigating the function <f>. 
As an example let us consider the equation x = A: tan x, which has 

many practical applications. For definiteness, we consider the case k = 0.5. 

Let it be required to find the smallest positive root of the equation 

x = £ tan x. It must lie near the point 1 and be somewhat larger than 1, 

as can be easily established from any table or graph of the function tan x. 
To secure the condition \<f>' | ^ q < 1, which enters into the theorem 

on the convergence of the method of iteration, we invert the function tan x 
and consider the equation x = arc tan lx, which is equivalent to the 

given one. 

We give here the results of the computation. For the original approxi¬ 

mation we have taken the value x0 = 1. The following approximations 

are computed from a table of the function arc tan x, from which one 

finds the following numerical values 

x, =arctan2 =1.10715, 

x2 = arc tan 2.21430 = 1.14660, 

= arc tan 2.29320 = 1.15959, 

x4 = arc tan 2.31918 = 1.16370, 

xs = arc tan 2.32740 = 1.16498, 

x, = arc tan 2.32996 = 1.16538, 

Xf = arc tan 2.33076 = 1.16550, 

x8 = arc tan 2.33100 = 1.16554, 

x8 = arc tan 2.33108 = 1.16555, 

xI0 = arc tan 2.33110 = 1.16556, 

xu = arc tan 2.33112 = 1.16556. 

The computation may be stopped here, since further iterations will 

repeat the value of the root 

x* = 1.16556. 
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A geometric illustration of the approximations to the root is given in 

figure 1. Here x„ tends to x* 
so rapidly that x4 is already 

indistinguishable from x* in 

the diagram. 

Let us give one more 

example of the method of 

iteration. We solve numeri¬ 

cally the integral equation 

y(x) = t f **y(t)dt + f 

1 1 

6x + 1 
(ex+1 - 1). (13) 

Fig. 1. Its exact solution is y = e*. 
First we replace the inte¬ 

gral equation by a system of linear algebraic equations. To this end 

the interval of integration (0, I] is divided into four equal parts at 

the points i = 0, £, f, 1. The values of the unknown function 

y at these points will be denoted by y„ » yi > y%. y»» y*. respectively. If 
we require that the equation be satisfied for x0 = 0, |, £, $, 1, when the 

integral is replaced by Simpson’s sum for four partial intervals (Chapter 

XII, §3, (6)), we have the following system of equations for y„: 

y0 = & (0.083333>’o + 0.333333y, + 0.166667ys 

+ 0.333333^ + 0.083333y4) + 0.713619, 

y, = i (0.083333>>o -I- 0.35483 ly, + 0.188858^ 

+ 0.402077>-3 + 0.107002y4) + 0.951980, 

yt = ^(0.083333>-o -F 0.3777I6.V, -F 0.214004^ 

+ 0.484997^ + 0.137393y4) + 1.261867, 

y3 = i (0.083333^0 + 0.402077>'1 + 0.242499^2 

+ 0.585018^ + 0.176417^) + 1.664181, 

yt = ^ (0.083 333y0 + 0.428008y, + 0.274787y2 

+ 0.705667j-3 + 0.226523y4) + 2.185861. 

This system is solved by the method of iteration. As our initial approxi¬ 

mation to yk (k = 0, 1, 2, 3, 4) we will take the constant terms of the 

corresponding equations: yj,01 = 0.713619, j4°’ = 0.951980, •••. The 

values found for the successive approximations are given in Table 1: 
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Table 1. 

Number of 
Approximation 

y» yi y. y» yt 

1 0.93428 1.20841 1.56129 2.01542 2.59972 
2 0.98517 1.26699 1.62905 2.09419 2.69173 
3 0.99667 1.28021 1.64433 2.11194 2.71245 
4 0.99926 1.28319 1.64778 2.11595 2.71713 
5 0.99985 1.28386 1.64856 2.11685 2.71818 
6 0.99998 1.28402 1.64873 2.11705 2.71842 
7 

Value of the exact 
1.00001 1.28405 1.64877 2.11710 2.71847 

solution 1.00000 1.28403 1.64872 2.11700 2.71828 

At the end of Table I the value of the exact solution is given for 

comparison. Further approximations would not improve the values of yk . 

The divergence in the last digits in the yk comes from the error introduced 

by replacing the integral by Simpson’s sum. 

Stability of approximate methods. The needs of practical computation 

impose on approximative methods another general requirement that must 

be kept in mind because of its great importance. This is the requirement 

of the stability of the computational process. The essence of the matter 

is as follows: Every approximative method leads to some computational 

scheme, and it often turns out that to produce all the required numbers, 

we must carry out a long series of computational steps in accordance 

with the scheme. At each step the computation is not carried out exactly 

but only to some specific number of significant figures, and thus at each 

step we introduce a small error. All such errors will have their influence 

on the final results. 

The computational scheme adopted may sometimes turn out to be so 

unsatisfactory that small errors made at the beginning may have a greater 

and greater influence as the calculations are carried further and may 

produce in the final stages a wide deviation from the exact values. 

Let us consider the numerical solution of a differential equation 

/ =f(x,y) 

with the initial condition y(x0) = y0, where we are required to find the 

values of y{x) for equally spaced values xk = xa + kh (k = 0, 1, 

We assume that the computation has begun and has been carried out 

to step n with the results shown in Table 2. 



316 xrrr. approximation and computing techniques 

Table 2. 

X y y' =f 

X. y« y't 
yi y'i 

•X«-l y--i y.-i 
y. y. 

We must now find yn+l. By the Euler method of broken lines we make the 

approximation 

y«+i = y« + hy'n . (14) 

Here yn+l is calculated only from the numbers y„ and y'„ which occur 

in the last line of Table 2. Suppose we wish to increase the accuracy 

and for this purpose make use of all the quantities appearing in the last 

two lines. Then we may construct the computational formula 

J'm I = -4y« + + h(4y'„ + 2V;_,). (15) 

We note that if the computation is absolutely exact, i.e., with an infinite 

number of significant digits, then formula (14) will give the exact result 

whenever y is a linear polynomial, and formula (15) will be exact for 

every polynomial of degree through the third. It would seem at first 

glance that the results produced by applying formula (15) must be more 

exact than those found by the method of broken lines. However, it can 

easily be seen that formula (15) is inappropriate for computation, since 

its application may produce a rapid increase in the error. 

The values of the derivative y'„ and y'_, contain a small multiplier h, 
so that the errors in these values have less influence than the errors in y„ 

and y„_t. For simplicity we will assume that the values of / are found 

exactly so that we do not need to take them into account in the following 

attempt to estimate the error in general in the above two cases. Let us 

suppose that in finding , we make an error of + e, and in finding y„ 

an error of — «. Then, as equation (15) shows, in y„+1 we will make an 

error of the magnitude of + 9e. In yn+2 the error will be — 41 e and will 

grow rapidly as we continue. Formula (15) leads to a computational 

process that is unstable with respect to errors and must be discarded. 

The example given shows how badly the results may be distorted by 

an unstable computational scheme. Here we have solved the differential 

equation y' = y with the initial condition y0 = I. The exact solution is 
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y + e*. For the numerical solution we took equally spaced values of the 

independent variable x with steps h = 0.01, i.e., xk = 0.01 k. An approxi¬ 

mate solution was computed in two ways: by the method of broken lines 

(14) and by formula (15). For comparison, Table 3 gives the value of 

the exact solution to seven decimal places. 

The approximate values of the solution found by formula (15) are more 

exact for the first few steps than the results given by the method of broken 

lines. But after a small number of steps the instability of formula (15) 

begins to distort the approximate values of yk quite strongly and leads 

to numbers which are very different from the true values of yk . 

Table 3. 

X 

Values 
of the 

Exact Solution 

Values of the 
Approximation Solutions Computed 

by Formula (14) by Formula (15) 

0.00 1.0000000 1.0000000 1.0000000 
0.01 1.0100502 1.0100000 1.0100502 
0.02 1.0202013 1.0201000 1.0202012 
0.03 1.0304545 1.0303010 1.0304553 
0.04 1.0408108 1.0406040 1.0408070 
0.05 1.0512711 1.0510100 1.0512899 
0.06 1.0618365 1.0615201 1.0617431 
0.07 1.0725082 1.0721353 1.0729726 
0.08 1.0832871 1.0828567 1.0809789 
0.09 1.0941743 1.0936853 1.1056460 
0.10 1.1051709 1.1046222 1.0481559 
0.11 1.1162781 1.1156684 1.3996456 
0.12 1.1274969 1.1268250 -0.2808540 

Choice of computational methods. Every computation may in the 

final analysis be reduced to the four arithmetic operations of addition, 

subtraction, multiplication, and division. Describing a method of computa¬ 

tion consists of stating the initial data with which one begins and then 

prescribing which arithmetical operations, and in which order, are to be 

performed in order to get the desired results. Let us show by a very 

simple example how much depends in the organization of the calculations 

on the experience and knowledge of the mathematician responsible for 

setting up the computational scheme and what excellent results can be 

obtained by a suitable choice of methods especially adapted to the 

situation. 
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Let it be required to solve the system of n equations in n unknowns 

» x2 » > xn 
+ °uxi + — + alnx„ = b,, 

a21Xl + Oi2X2 + + a2„X„ = b2 , 

anlx1 + antxt + — + a„„x„ = b„ . 

From the theory of algebraic systems (Chapter XVI, §3) we have an explicit 
expression for the values of the unknowns by means of determinants 

= j (j = 1.2, n). (16) 

Here A is the determinant of the system 

On 012 - Oln 

A = 
On au - a2„ 

Onx On 2 - Qnn 

and As is the determinant obtained from A by replacing its y'th column 
by the column of constant terms in the system. 

Let us assume that we wish to make use of formula (16) to solve the 
system and that we have begun to compute the determinants on the basis 
of their usual definition, without recourse to any simplifications. How 
many multiplications and divisions will be necessary? (Addition and 
subtraction will not be taken into account, since they are relatively simple 
operations.) We face the prospect of computing n + I determinants of 
order n. Each of them consists of n] terms, each term being the product 
of n factors and consequently requiring n— 1 multiplications. For the 
computation of all the determinants, we must carry out (n + l)n! 
x (n—1) multiplications. The total number of multiplications and 
divisions will be equal to (n2— l)/i! + n. 

We now choose another method of solving the system, namely successive 
elimination of the unknowns. The scheme of computation corresponding 
to this method is associated with the name of Gauss. We find Xj from 
the first equation of the system 

b2__a» 

flu an 
_r „ -*n 

For this we need n divisions. Substituting x, in each of the following n — 1 

equations requires n multiplications. The elimination of x, and the setting 
up of n— 1 equations in the unknowns x2, , x„ will then require n2 
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multiplications and divisions. Continuing in this way, we find that to 

compute all the values of xj (j — 1, , n) the elimination method requires 

n/6 (2n* + 9n — 5) multiplications and divisions. Let us compare these 

two results. For the solution of a system of five equations in the first 

case we would need 2,885 multiplications and divisions, and in the second 

case 75. 

For a system of ten equations the number of operations will be 

(102— 1) 10! + 10 * 360,000,000 and 10/6(2 • 10* + 9 • 10 — 5) = 475, 

respectively. So we see that the amount of computational labor depends 

very strongly on the choice of the method of computing. Tn organizing 

the scheme of computation, it is often possible by a rational choice of 

the method to reduce the necessary amount of work very greatly. 

§2. The Simplest Auxiliary Means of Computation* 

Tables. The oldest auxiliary means of computation consists of tables. 

The simplest tables, e g. the multiplication table and tables of logarithms 

or of the trigonometric functions, are certainly well known to the reader. 

The range of problems that are solvable in practical affairs is being 

continuously extended. New problems are often solved by the application 

of new formulas or may lead to new functions, so that the number of 

tables required is constantly increasing. 

Every table, regardless of how it is constructed, contains the results of 

earlier computations and therefore represents a sort of mathematical 

memory. Printed or written tables are intended to be read by human 

beings. But we might also consider tables formed in some special manner, 

for example by holes punched in some special manner in cards, which 

are intended to be read by computing machines. But such tables are 

considerably rare and we will not discuss them here. 

The tables in widest use are those of the values of functions. If a function 

y depends on only one argument x, then the simplest table corresponding 

to it has the form 

y 

y\ 
y, (17) 

y. 

* In this section we give a description only of the simplest auxiliary equipment and 
machines. The description of contemporary rapid computing machines is given in 
Chapter XIV. For lack of space we have also omitted graphical methods. 
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This is called a single-entry table.* From it we may take without further 

effort only the values corresponding to tabulated values of x. Values 

corresponding to x not in the table must be found by interpolation of 

various kinds, as described in Chapter Xll.t Consequently the tables 

often contain, in addition to the values of the functions, certain auxiliary 

quantities which make the interpolation easier. Usually these are values 

of the first or second differences. More specialized tables require specially 

devised interpolation formulas for which they include the corresponding 

data. 

In a table of a function of two arguments u = f(x, y) the values of the 

function are distributed in a double-entry table of the following form 

y 
X 'v 

yi yt y- 

Xi 
“•» •'ll 

Xt 
... 

“i« Utm 

X. • •• 

(17') 

Each column of such a table is itself a single-entry table, so that (17') 

is a collection of many tables of the form (17). The size of a table for a 

function of two arguments is, as a rule, much greater than for a function 

of one argument with the same interval for the independent variables. 

In view of this, functions of two arguments are much less often tabulated 

than functions of one argument. 

How quickly the size of a table can grow with an increase in the number 

of arguments is shown by the following simple example. Let it be required 

to tabulate a function of four arguments f(x, y, z, t) for 100 values of each 

of the arguments. Let us assume that the function does not need to be 

computed very exactly, only to three significant figures. If under such 

conditions we tabulate a function of one argument, the whole table of 

values will consist of a hundred three-digit numbers and may easily be 

put on one page. 

* Such a column may be very long and may therefore be broken up into many smaller 
columns for convenience of printing. But of course it is still called a single-entry table. 

t Interpolation, as a rule, is more complicated if the tabulated values x, are farther 
apart and simpler if they are closer together. Moreover, the requirement concerning 
rapidity of interpolation may vary widely, fn tables designed for artillery use, inter¬ 
polation must be done almost instantly, "at sight.” But in tables of higher accuracy, 
designed for use in the sciences, we may allow interpolations which require a whole 
series of operations. 
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But in a four-entry table for the function f(x, y, z, t), we will have 

1004 combinations of the values of x, y, z, t and as many values of /, 

from which it is easy to calculate that the table would fill more than 300 

volumes. 

Because such tables are so unwieldy, functions of many arguments are 

seldom tabulated and then only in particularly simple cases. In the last 

few years there has begun a systematic study of classes of functions of 

many variables for which tables may be formed with a number of entries 

less than the number of arguments. At the same time studies have been 

begun on the simplest possible construction of such tables. 

We give a simple example of such a function. 

Let it be required to tabulate the function u of three arguments x, y, z 
with the following structure 

“ = fWx, y), z). 

It is perfectly clear that here one may restrict oneself to two double - 

entry tables if we introduce the auxiliary variable t = <f>(x, y) and consider 

u as the composite function 

w = /(', z)> 

' = <t>(x, y). 

For convenience in the use of these tables, we may combine them in 

the following manner. We consider the function t = <f>(x, y) and solve 

this equation with respect to y 

y = 0(x, t). 

In theory it makes no difference which of the functions t = tj>(x, y) or 

y = 0(x, t) is tabulated, but it will be more convenient for us to tabulate 

the second of them. We construct two double-entry tables for the functions 

y — <P(x, t) and u = f(t, z) and combine them in the manner shown in 

Table 4. 

Table 4. 
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The value of u which corresponds to given values xit y,, zk is 

found as follows: We find the column headed by xt and running 

down it, pick out the value y, (or one near it). In the horizontal 

row through it will be the corresponding value of t. Moving further 

along this horizontal row we find in column z* the required value 

" = f(x,, y,, zk). 
In this example we see that, rather than make a triple-entry table, we 

may restrict ourselves to two double-entry tables with a simple rule for 

operating with them. 

The use of various possible methods of shortening tables allows us in 

certain cases to decrease the size of the tables by a factor of ten, a hundred, 

or even a thousand in comparison with tables in which the number of 

entries is equal to the number of independent arguments. 

Desk computers. Almost as old as tables as an aid to computation 

are various computing devices. Some of them were used even in ancient 

Greece. 

The first models of calculating machines were constructed in the 17th 

century by Pascal, Moreland, and Leibnitz. From that time on the 

machines were repeatedly changed and improved and were in wide use 

by the end of the last century and especially at the beginning of the 

present one. 

We will only look at certain forms of machines and will consider the 

possibility of speeding up the computations which they perform. We begin 

with the small, so-called universal desk computers. Each of these, in¬ 

dependently of its construction, is designed to perform the four arithmetic 

operations, with multiplication and division being done by repeated 

series of additions and subtractions. 

A typical early model of such a machine is the wheeled arithmometer 

of Odner. Entering a number into the adjustable mechanism is accom¬ 

plished by moving a lever the necessary number of notches corresponding 

to each digit of the number. In the process of addition each summand 

is entered into the adjustable mechanism and then, by one rotation of 

the handle, is transferred to the accumulator, where it is automatically 

added to the number already there. Subtraction corresponds to a rotation 

of the handle in the opposite direction. Multiplication is carried out by 

entering the multiplicand into the adjustable mechanism and then repeated¬ 

ly adding it to itself for each digit of the multiplier. For example, to 

multiply by 45 corresponds to five repeated additions of the multiplicand 

and then four repeated additions of the same number moved over one 

place. 

For division the dividend is placed in the accumulator and the quotient 
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is found by repeated subtraction of the divisor, digit by digit. The result 

is determined by the number of rotations of the handle needed in each 

digit place to remove the number from the accumulator. 

We have given this brief description of the computations here only in 

order to make clear the direction of further improvements in desk 

calculators. Some of these improvements have merely made the machines 

more convenient without changing the basic scheme of their construction. 

An improvement of this kind is the introduction of electricity, which 

accelerates the action of the machine and frees the operator from having 

to turn the handle. 

To accelerate and simplify the entering of numbers into the adjusting 

mechanism, keys for receiving instructions were introduced. The entering 

of given digits is carried out, not by rotating a lever for the specific number 

of notches, but simply by punching the corresponding key. Calculators 

were invented on which it is sufficient for the operator to enter the number 

on which it is desired to perform a given operation and then to punch 

the key which tells which of the four operations is to be performed. 

The machine will carry on from there without further human intervention. 

The improvement of desk computers also brought about a remarkable 

increase in their rapidity, so that in the latest models the result of a mul¬ 

tiplication is obtained within one second after punching the keys. Further 

acceleration in the action of such machines is obviously superfluous, 

since it takes considerably longer than that for the operator merely to 

punch the keys and record the results. 

Digital (punched card) machines and relay machines. Digital machines 

were invented for statistical computations and for financial and industrial 

use. They are designed to carry out a large number of uncomplicated 

computations of the same kind. They are less convenient for technical 

and scientific calculations because of their very small operating “memory” 

and the restricted possibility of establishing computational programs for 

them. In spite of these deficiencies, digital machines, up to the appearance 

of fast-acting electronic machines, were quite widely used in complicated 

and large-scale calculations when the whole process could be reduced to 

a fairly short sequence of operations to be carried out on a massive scale 

(for example, in preparing tables). 

The numbers with which the digital machine operates are entered on 

punched cards (figure 2). The digits and symbols are entered on the card 

by means of a punch in specific places. The card is introduced into the 

machine through a system of brushes. A brush under which a hole is 

passing closes an electrical circuit and sets in operation a given phase 

of the machine. 
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The different types of digital machines are designed to work in sets, 

each set containing at least the following machines: 

A card-punch serves to punch the holes in the cards. The machine has 

a keyboard operated by hand and works at the speed of a typewriter. 

A sorter is designed to arrange the cards in the order in which they are 

to be introduced into the calculating machines. The speed of the work is 

450-650 cards per minute. 

A reproducing punch or reproducer transfers punches from one card to 

another, compares two sets of cards, and selects from them cards with 

specific perforations. The speed of working is around 100 cards per 

minute. 

A tabulator performs the operations of addition and subtraction and 

also prints out the results. It may handle 6,000 to 9,000 cards an hour. 

A multiplying punch (multiplier) adds, subtracts, and multiplies numbers. 

The results are given in the form of punches on the cards. In working 

with numbers of 6 or 7 digits it may perform 700-1,000 multiplications 

an hour. 

Digital machines work rather slowly. As a rough estimate of the amount 

of work they can perform, we may say that the above set of machines 

can replace 12 to 18 desk computers. The first attempts to create faster 

machines led to the construction of relay machines based on the application 

of electromechanical relays. The rate of work of such machines turned 

out to be about ten times as great as the speed of the simple digital 

machines. But the gains in other respects were remarkable: Relay machines 

carry out complicated computational programs and have a flexible control 

system that greatly extended the range of technical and scientific problems 

solvable on machines. However, the appearance of these machines almost 

coincided in time with the creation of the first models of electronic 

machines with programmed control, and these led to a further sharp 

increase in the working speed. As an indication of the great increases 

in speed which have been made possible by the invention of electronic 

machines, we may point out that the time required for a change of state 

in an electronic tube is measured in millionths of a second. 

Mathematical machines with continuous action (analogue machines). 

Mathematical machines with continuous action are made up of physical 

systems (mechanical apparatus, electrical circuits, and so forth), con¬ 

structed in such a manner that the same numerical interrelations occur 

among the continuously changing parameters of the system (displacements, 

angles of rotation, currents, voltages, and so forth) as among the cor¬ 

responding magnitudes in the mathematical problem to be solved. Such 

machines are often called simulating (or analogue) machines. 
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Every machine with continuous action is especially designed for the 

solution of some narrow class of problems. 

The accuracy with which the machine gives the solution depends on 

the quality of manufacture of the component parts, the assembling and 

calibration of the machine, the inertial errors in its operation, and so 

forth. On the basis of lengthy experience in using the machines, it has 

been established that as a rule they are capable of an accuracy of two 

or three significant digits. In this respect simulating machines are notably 

inferior to digital machines, whose accuracy is theoretically unlimited. 

An important characteristic of machines with continuous action is that 

they are suitable for the solution of a large number of problems of one 

type. In addition, they often produce the solution with considerably 

greater rapidity than a digital machine. Their principal advantage consists 

of the fact that in many cases it is more convenient to introduce the initial 

data of the problem into them, and also the results are often obtained 

in a more convenient form. 

There are many different types of simulating machines. It is possible 

to create machines, or parts of machines, that are models of various 

mathematical operations: addition, multiplication, integration, differentia¬ 

tion, and so forth. We may also simulate various formulas used in 

computation; for example, we can construct machines to compute the 

values of polynomials or the Fourier coefficients in harmonic analysis 

of functions. We may also simulate numerical or functional equations. 

The many analogies that exist between problems from completely different 

branches of science lead to the same differential equations. Identity of 

the equations involved allows us for example, to simulate heat phenomena 

by electrical means and to solve problems in heat engineering by means 

of electrical measurements, a procedure that is certainly convenient, since 

electrical measurements are more exact than measurements of heat and 

are much easier to make. 

In view of the large number of simulating machines, it is impossible 

to describe in a few words the machines themselves or even the principles 

of their construction. To give the reader at least some idea of how 

mathematical problems may be simulated, let us give a short description 

of two simple mathematical machines, one of which is designed for 

integration of functions and the other for approximate solution of the 

Laplace equation. 

The friction integrator (figure 3) is designed, as the name indicates, to 

integrate functions. It works by friction. The basic idea of its construction 

is shown in figure 4, where the component 1 is the base of the integrator, 

2 is a horizontal friction disc with a vertical shaft, 3 is a friction roller, 

i.e., a roller with a smooth rim which can not only roll along the disc 
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but also move in the plane perpendicular to the plane of rolling. Compo¬ 

nents 4 and 5 constitute a screw mechanism in which the screw 4 is 

connected with the carriage bearing the roller. If the pitch of the screw 

is denoted by h, then rotation of the screw through angle y will transfer 

the roller over a distance p = hy in the plane of the drawing. 

Fig. 3. Fig. 4. 

Let the shaft of the disc be rotated through angle da. The point of 

contact of the roller will then move through an arc of length p da. If the 

roller moves over the disc without slipping, the angle of rotation of the 

roller will be equal to 

d<t> = -P-da = -^-yda 

We assume that the rotation of the shaft of the disc began with angle a0 

and the initial angle of rotation of the roller was <f>0 . From this equation 

we obtain by integration 

By suitable choice of the relation between the angles y and a, we can 

use the friction integrator to compute a desired integral in a wide variety 

of cases. By means of integrating mechanisms it is possible to obtain 

a mechanical solution of many differential equations. 

We turn to the second example. Let a domain Q be given in the plane, 

bounded by a curve /. It is required to find a function u which inside 

the domain satisfies the Laplace equation 
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and on the contour / takes given values 

u \i — f 

We introduce a square net of points 

xk = x0 + kh, yk = y0 + kh, k = 0, ± 1, ± 2, — , 

and replace the domain Q itself by a polygon composed of squares. 

Corresponding to the contour / we have a broken line. We transfer the 

boundary values of/on / to this broken line. The value of the unknown 

function u at a node (x,, yk) is denoted by uik . To secure an approximate 

solution of the Laplace equation in Q, we replace it by an algebraic 

system, which must be satisfied for all interior points of the domain: 

= $(«0+i.* + u> .*+1 + ut- l.k + ul.k-l)- 

For a solution of this algebraic system, we may construct the following 

electrical model. We introduce in 

the plane a two-dimensional con¬ 

duction net, the scheme of which 

is illustrated in figure 5. The 

resistance between two nodes is 

assumed to be everywhere the 

same. At the boundary nodes of 

the net, we now apply voltages 

equal to the boundary values of u 
at these nodes. These voltages 

will determine the voltage at all 

interior points of the net. We 

denote by Uuk the voltage at 

the node (x,, yk). If we apply 

KirchhofT’s law to the node 

(x,, yk), it is clear that at this 

node the following equation will be satisfied 

4- 1(<W - u>.*) + W.*+i - </,.*) 
+ W-,.* - V,.k) + (I/,.*-, - Ut.k) 1 = 0, 

which differs only in notation from the previous equation for our algebraic 

system. At the nodes of the net the values uik of the solution of the algebraic 

system must agree with the voltages Ulk, which can be obtained from 

the model by the usual electrical measurements. 
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CHAPTER XIV 
ELECTRONIC 

COMPUTING MACHINES 

§1. Purposes and Basic Principles of the Operation of Electronic Computers 

Mathematical methods are widely used in science and technology, but 

the solution of many important problems involves such a large amount 

of computation that with an ordinary desk calculator they are practically 

unsolvable. The advent of electronic computing machines, which perform 

computations with a rapidity previously unknown has completely 

revolutionized the application of mathematics to the most important 

problems of physics, mechanics, astronomy, chemistry, and so 

forth. 

A contemporary universal electronic computing machine performs 

thousands and even tens of thousands of arithmetic and logical operations 

in one second and takes the place of several hundred thousand human 

computers. Such rapidity of computation allows us, for example, to 

compute the trajectory of a flying missile more rapidly than the missile 

itself flies. 

In addition to their great rapidity in performing arithmetic and logical 

operations, universal electronic computing machines enable us to solve 

the most diverse problems on one and the same machine. These machines 

represent a qualitatively new method which, besides an enormously 

increased production of standard results, makes it possible to solve 

problems previously considered quite inaccessible. 

In many cases the computations must be carried out with great rapidity 

if the results are to have any value. This is particularly obvious in the 

example of predicting the weather for the following day. With hand 

calculators the computations involved in a reliable weather forecast for 

331 
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the next day may themselves require several days, in which case they 

naturally lose all practical value. The use of electronic computing 

machines for this purpose makes it possible to secure the complete results 

in plenty of time. 

The high-speed electronic computing machine. The high-speed elec¬ 

tronic computing machine (BESM) which was constructed in the Institute 

for Exact Mechanics and Computing Technology of the Academy of 

Sciences of the USSR is an example of such a machine. In one second 

the machine performs between 8,000 and 10,000 arithmetic operations. 

We scarcely need to remind the reader that on a desk calculator an ex¬ 

perienced operator can carry out only about 2,000 such operations in 

one working day. Consequently, the electronic computer can perform in 

a few hours computations that the experienced operator could not perform 

in his whole lifetime. One such machine would replace a colossal army 

of tens of thousands of such operators. Merely to give them a place to 

stand would take up several hundred thousand square yards. 

These electronic machines have been used to solve a large number of 

problems from various domains of science and technology. As a result 

economies have been achieved amounting to hundreds of millions of 

dollars. We give several examples. 

For the international astronomical calendar the orbits of approximately 

seven hundred asteriods were computed in the course of a few days, 

account being taken of the influence on them of Jupiter and Saturn. 

Their coordinates were determined for ten years ahead and their exact 

positions were given for every forty days. Up till now such computations 

would have required many months of labor by a large computing 

office. 

In making maps from the data provided by a geodetic survey of a 

given locality, it is necessary to solve a system of algebraic equations 

with a large number of unknowns. Problems with 800 equations, requiring 

up to 250 million arithmetic operations, were solved on the electronic 

machine in less than twenty hours. 

On the same machine tables were calculated to determine the steepest 

possible slope for which the banks of a canal would not crumble, and 

in this way large savings of time and material were effected in the con¬ 

struction of hydroelectric power stations. In previous attempts fifteen 

human computers had worked without success for several months 

in an effort to solve this problem for only one special case. On the 

electronic machine the computations for ten cases took less than three 

hours. 

On the machine one may rapidly test many different solutions for given 
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problems and choose the most appropriate. Thus one may determine, 

for example, the most appropriate mechanical construction of a bridge, 

the best shape for the wing of an airplane, or for the nozzle of a jet motor, 

the blade of a turbine, and so forth. 

The practically infinite accuracy of the computations makes it possible 

to construct very rapidly all kinds of tables for the needs of science and 

technology. On the BESM the construction of a table containing 50,000 

values of the Fresnel integral required only one hour. 

Applications of electronic computing machines to problems of logic. 

In addition to handling mathematical problems, we may also solve 

logical problems on an electronic computing machine; for example, we 

may translate given texts from one language into another. In this case, 

instead of storing numbers in the machine, we store the words and numbers 

that take the place of a dictionary. 

Comparing the words in the text with the words in the “dictionary,” 

the machine finds the necessary words in the desired language. Then by 

means of grammatical and syntactical rules, which are described in the 

form of a program, the machine “processes” these words, changing them 

in case, number or tense, and setting them in the right order in a sentence. 

The translated text is printed on paper. For a successful translation a very 

large amount of painstaking work on the part of philologists and mathe¬ 

maticians is needed to set up the programs. 

Experimental dictionaries and programs for the translation of a 

scientific-technical text from English into Russian were set up at the 

Academy of Sciences of the USSR, and at the end of 1955 the first ex¬ 

perimental translation was produced on the BESM machine, even though 

this machine is not especially adapted for translation. 

By way of experiment complicated logical problems were successfully 

solved on the BESM; for example, chess problems. A complete analysis 

of chess is not possible on present-day electronic machines in view of 

the enormous number of possible combinations. As an approximate 

method the relative values of the various pieces are estimated ; for example, 

ten thousand points for the king, one hundred for the queen, fifty for a 

rook. Various positional advantages are also estimated to be worth a 

certain number of points; i.e., open files, passed pawns, and so forth. 

By a series of trials the machine chooses the course of action that after 

a specified number of moves produces the greatest number of points 

for all possible answers on the part of the opponent. However, in view 

of the enormous number of possible combinations the solution is neces¬ 

sarily restricted to trying a comparatively small number of moves, which 

excludes the study of strategic plans of play. 
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Basic principles of the operation of electronic computing machines. 

A present-day electronic computing machine consists of a complicated 

complex of elements of elec¬ 

tronic automation: electron 

tubes, germanium crystal el¬ 

ements, magnetic elements, 

photoelements, resistors, 

condensers, and other ele¬ 

ments of radio technology. 

Arithmetic operations are 

performed with colossal ra¬ 

pidity by electronic com¬ 

puting devices, which are 

assembled in the arithmetic 

unit (figure 1). 

But to guarantee high 

speed for computations it is 

not enough just to perform 

rapid arithmetic operations 

on numbers. In the machine the whole computational process must be 

completely automatic. Access to the required numbers and establishment 

of a specific sequence of operations on them are set up automatically. 

The numbers on which the operations are to be performed and also 

the results of intermediate calculations must be stored in the machine. 

An entire mechanism, the so-called “memory unit” is designed for this 

purpose; it allows access to any required number and also stores the 

result of the computation. The capacity of the memory unit, i.e., the 

number of numbers that may be stored in it, to a great extent determines 

the flexibility of the machine for the solution of various problems. 

In present-day electronic machines the capacity of the memory unit 

is from 1,000 to 4,000 numbers. 

The extraction of the required numbers from the memory unit, the 

operation that must be performed on these numbers, the storing of the 

result in the memory unit and the passage to the next operation are all 

guided in the electronic computing machine by a control unit. After 

the computing program and the initial data are introduced into the 

machine the control unit guarantees the fully automatic character of the 

computational process. 

To introduce the initial data and the computational program into the 

machine, and also to print the results on paper, is the purpose of special 

input and output units. 

When we are using the machine for making computations, we must 

Fig. I. Diagram of the basic units of an 
electronic digital computer. 
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have confidence in the correctness of the results produced; i.e., we must 

have some means of checking them. Verification of the correctness of 

the computations is effected either by means of special verification 

mechanisms or by the usual methods of logical or mathematical verification 

embodied in a special program. The simplest example of such a verification 

is the “duplication check” (the so-called “calculation on both hands”), 

which consists of computing twice and collating the results. 

Before proceeding to the solution of a particular problem, we must 

first of all, on the basis of the physical process under investigation, state 

the problem in terms of algebraic formulas, or of differential or integral 

equations, or other mathematical relations. Then by applying well- 

developed methods of numerical analysis, we can almost always reduce 

the solution of such a problem to a specific sequence of arithmetic 

operations. In this way the most complicated problems are solved by 

means of the four operations of arithmetic. 

To perform any arithmetic operation by hand computation it is neces¬ 

sary to take two numbers, perform the given arithmetic operation on 

them, and write down the result produced. This result may be necessary 

for further computations or may itself be the desired answer. 

The same operations are also carried out in electronic computing 

machines. The memory unit of the machine consists of a series of locations 

or cells. The locations are all enumerated in order, and to select a number 

for calculation, we must give the location in which it “is stored.” 

To perform any one arithmetic operation on two numbers, we must 

give the locations in the memory unit from which the two numbers are 

to be taken, the operation to be performed on them, and the location 

in which the result is to be placed in the memory. Such information, 

presented in a specific code, is called an "instruction.” 

The solution of a problem consists of performing a sequence of 

instructions. These instructions constitute the program for the computation 

and usually they are also stored in the memory unit. 

A computing program, i.e., a set of instructions effecting the sequence 

of arithmetic operations necessary for the solution of the problem, is 

prepared by mathematicians in advance. 

Many problems require for their solution several hundred million 

arithmetic operations. So in electronic machines we use methods which 

allow a comparatively small number of initial instructions to govern a 

large number of arithmetic operations. 

Together with the instructions governing arithmetic operations, elec¬ 

tronic computers also provide for instructions governing logical opera¬ 

tions; such a logical operation may consist, for example, of the comparison 

of two numbers with the purpose of choosing one of two possible further 
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courses for the computation, depending on which of the two numbers 

is the larger. 

The instructions of a program and also the initial data are written in 

terms of a prearranged code. Usually the description of the instruction 

is recorded on perforated cards or tape in the form of punched holes or 

else on magnetic tape in the form of pulses. Then these codes are in¬ 

troduced into the machine and placed in the memory unit, after which 

the machine automatically carries out the given program. 

The results of the computation are again recorded, for example in the 

form of pulses on a magnetic tape. Special decoding and printing units 

translate the magnetic tape code into ordinary digits and print them in 

the form of a table. 

The speed with which computers perform the most complicated 

calculations has produced a saving of mental labor which can only be 

compared with the saving in physical labor made possible by modern 

machinery. Of course, an electronic machine only carries out a program 

set up by its operator; it does not itself have any creative possibilities 

and cannot be expected to replace a human being. 

The wide use of electronic computing machines in institutes of science 

and technology, in construction offices, and in planning organizations 

has opened up limitless possibilities in the solution of problems in the 

national economy. Engineers and mathematicians have before them 

rewarding prospects for further development in the operation and con¬ 

struction of computing machines and also in their application and 

exploitation. 

Electronic computing machines are powerful tools in human hands. 

The significance of these machines for the national economy can hardly be 

overestimated. 

§2. Programming and Coding for High-Speed Electronic Machines 

The basic principles of programming; 1. Euler’s method for differential 

equations. For computations on electronic machines the mathematical 

method selected for approximating the solution of a problem necessarily 

consists of a sequence of arithmetic operations. The execution of these 

operations by the machine is guaranteed by the program, which as we 

have said, consists of a sequence of instructions. Of course, if we were 

required to give a separate instruction for each one of the arithmetical 

operations, the program would be very lengthy and even to describe it 

would take about as much time as performing the operations themselves 

by hand. Thus in programming we must try to make a small number of 

instructions suffice for a large number of arithmetic operations. 
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To clarify the structure of a sequence of instructions and the methods 

of setting up a program, let us first examine the operations that must be 

performed when a very simple problem is solved by hand. 

We will take as an example the solution by Euler’s method of the 

following differential equation of the first order with the given initial 

conditions 

Tr=ay' y k = -v»- (') 

In this method the range of values of x is divided up into a sequence 

of intervals of equal length Ax = h, and within each interval the derivative 

dy/dx is regarded as a constant, equal to its value at the beginning of the 

interval.* With these assumptions the computation for the Arth interval 

is given by the formulas 

yk+1 = yk + 4 Vk, 
xk+l — xk + h. 

After carrying out the calculation for the A:th interval, we go on to the 

(k + l)th interval. The computation begins with the given initial values 

x0 and y0 . The sequence of operations is shown in Table I. 

In hand computations only the first three operations are performed, 

the others being understood but not written down; this is true, for example, 

of the instruction to begin over again for the following interval, to end 

the computation, and so forth. In machine computation all these 

operations must be exactly formulated (operations 4-7). Consequently, 

in the machine, in addition to the arithmetic operations, we must also 

arrange in advance for the control operations (operations 4-7). The control 

operations have either a completely definite character (for example, 

operations 4 and 5) or a conditional character, which depends on the 

result just produced (for example, operations 6 and 7). Since the last two 

operations are mutually exclusive (we must perform either one or the 

other of them), these two operations are combined in the machine into 

one (a comparison operation), which is formulated in the following way: 

“If x is less than xn , repeat the operations beginning with number I; 

but if x is equal to or greater than x„, stop the computation.” In this 

* In practice the solution of an ordinary differential equation is usually calculated 
by a more complicated and exact formula. 
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Table 1. Operations Necessary for the Solution of Equation (1) by 

Euler’s Method 

Number of 
the Operation 

Quantity 
Defined 

Formula Computations* 

1 <.ah)y„ (aA)( 2).-, 
2 yt-1 yt + Ayk (2),., + (1), 
3 ^*♦1 xt + h (3),-, + h 
4 Print the value found for xttl. 
5 Print the value found for y„^l. 
6 Repeat the computation, beginning 

with operation no. 1 for the new 
values of x and y. 

7 When x reaches the value x„, stop 
the computation. 

way, the sequence of further computations depends on the magnitude of 

the x already produced in the process of computing. 

2. The three-address system. A glance at Table 1 shows that to 

perform any arithmetic operation it is necessary to indicate: First, which 

operation (addition, multiplication, etc.) is to be performed; second, 

which numbers is it to be performed on; and third, where to put the 

result, since it is to be used in further computation. 

The code expressions for the numbers are stored in the memory unit 

of the machine; consequently the indexes of the corresponding locations 

in the memory must be given: namely, where the numbers are to be 

taken from and where the result is to be placed. This leads to the most 

natural “three-address system of instructions.” 

In the three-address system, a specific set of locations in the code is 

assigned to defining the operations; i.e., to stating which operation is 

to be performed on the given two numbers (the code of operations). 

The remaining locations in the instruction code are divided into three 

equal groups, called “instruction addresses” (figure 2). The code in the 

* The digits (with subscripts) in parentheses in the column "Computations" indicate 
the operation whose result is to be used in the computation. For example, in the first 
operation (the first row) we have to multiply the quantity (ah) by the quantity found 
as a result of performing the second operation (the second row for the preceding interval 
(2)t_,; in the second operation we have to add the quantity resulting from the opera¬ 
tion for the preceding interval (2)»_, to the quantity resulting from the first operation 
for the present interval (l)t. 

At the beginning of the computation the initial data x0 and y„ are placed in the 
column “Quantity Defined” for operations 2 and 3. 
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first address shows the index of the location in the memory unit from 

which the first number is to be taken, the second address code is the 

index of the location from which the second number is to be taken, and 

Code of the 
Operation 1st Address 2nd Address 3rd Address 

Fig. 2. The structure of a three-address system of instructions. 

the third address code is the index of the location of the memory unit 

in which the result is to be placed. 

Code expressions for instructions referring to the control unit may also 

be put into the three-address system. Thus, the instruction “transfer a 

number to the print-out unit” must be represented in the code of operations 

by the number assigned to this operation; in the first address will appear 

the index of the location in the memory unit where the number to be 

printed is stored and in the third address the index of the printing unit 

(in the second address the code is blank). An instruction that either one 

course or another is to be followed is called a “comparison instruction.” 

The code of operations of such an instruction states that it is necessary 

to compare two numbers, namely the ones indicated in the first and 

second addresses of the instruction. If the first number is smaller than 

the second, we must pass to the instruction indicated in the third address 

of the comparison command. But if the first number is greater than or 

equal to the second, then the given instruction consists simply of the 

command to pass to the next instruction. 

Instruction codes, as well as number codes, are stored in the memory 

unit and follow one after the other in the order in which they are num¬ 

bered provided there is no change indicated in the course of the 

computations (for example, by a comparison operation). 

Let us consider how the program will look in the previous example. 

We set up the following distribution of number codes in the locations 

of the memory unit: 

The quantity ah is in the 11th location 

The quantity h is in the 12th location 

The quantity x„ is in the 13th location 

The quantity x is in the 14th location 

The quantity y is in the 15th location 

The operative location* is the 16th. 

* A location in which intermediate values found in the course of the computation 
are placed is called operative. 
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Corresponding to the preceding table we get the following program 

(Table 2). 

Table 2. Program for the Solution of Equation (1) by Euler’s Method 

Number 
of the 

Instruction 

Instruction Code 

Code of the 
Operation 

1st 
Address 

2nd 
Address 

3rd 
Address Remarks 

1 Multiplica¬ 
tion 

11 15 16 Ayn = (ah)yk 

2 Addition 15 16 15 yt *i = yk + Ayk 
3 Addition 14 12 14 Xkti — Xk T h 
4 Print 14 1 Print Xtki in the first 

printing unit 
5 Print 15 — 2 Print ykti in the second 

printing unit 
6 Compare 14 13 i If x < xt, return to 

instruction no. 1; if 
x > xk, pass to the 
following instruction, 
i.e., to instruction 
no. 7. 

7 Stop — — End of the computa¬ 
tion. 

The instruction code is placed in the memory unit (in Table 2, in the 

1st through 7th locations). In the control unit we then place the instruction 

found in the first location of the memory unit. In obedience to this 

instruction the number in the 11th location is multiplied by the number 

in the 15th; i.e., the quantity Ayk = (ah)yk is computed. The result is 

placed in the operative 16th location. With the completion of this operation 

the instruction from the next location of the memory unit, i.e., from the 

second location, enters the control unit. By this instruction the quantity 

y*+, = yk + Ayk is found, and is placed in the 15th memory location; 

i.e., it replaces the previous value of y. Similarly, by the third instruction 

the new value of x is found; the 4th and 5th instructions cause the printing 

of the newly found values of x and y; the 6th instruction defines the 

further course of the computational process. This instruction produces 

a comparison of the number found in the 14th memory location with 

the number in the 13th location, i.e., a comparison of the value xk+l 
which has been produced with the final value x„ . If < x„, the 

computation must be repeated for the next interval; i.e., in the given 

example we must return to the first instruction. The index of this instruc- 
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tion, to which we must pass if the first number is less than the second, 

is shown in the third address of the comparison instruction. But if the 

computation has produced a value xt+I ^ x„ , the comparison instruction 

causes passage to the next instruction, i.e., to the 7th, which stops the 

computing process. 

Before beginning the computation, we must introduce in the memory 

unit the instruction codes (in locations 1-7), the code expressions for the 

constants (locations 11-13) and also the initial data, i.e., the values 

x„ and y0 (in locations 14 and 15). 

After completion of the computation for the first interval, the 14th 

and 15th memory locations will contain, in place of x0 and y0, the 

quantities x, and y,, i.e., the values of the variables for the beginning 

of the next interval. In this manner, the computations for the next interval 

will be produced by repetition of the same instruction program. 

The example considered shows that, by carrying out a cyclical repetition 

of a series of instructions, we may carry out a large amount of computation 

with a comparatively small program. The method of cyclical repetition 

of separate parts of a program is widely used in programming the solution 

of problems. 

3. Change of address of instructions. A second widely used method 

that allows one to make essential reductions in the size of a program 

consists of automatically changing the addresses of certain instructions. 

To explain the essence of this method, we take the example of computation 

of the values of a polynomial. 

Let it be required to compute the value of the polynomial 

y = a„x* + a,x* + atx* + a^x3 + atx* +- a5x + ae. 

For machine computation this polynomial is more conveniently represent¬ 

ed in the form 

y = (((((«<►* + °i)x + Ot)x + a3)x + at)x + a5)x + at. 

Let the values of the coefficients a„ , •••, ag be placed in memory locations 

20-26, and the value of x in the 31st location of the memory unit. The 

program is very easy to construct and is given in Table 3. 

As can be seen, in this program the operations of multiplication and 

addition occur alternately. All the multiplication instructions, with the 

exception of the 1st, are completely alike: we have to multiply the number 

found in the 27th location by the number found in the 31st and put the 

result in the 27th. All the addition instructions have the same 1st and 
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3rd address. But the index of the location in the second address, in chang¬ 
ing from one instruction of addition to the next, is increased each time 
by one: in the second instruction the number is found in the 21st location, 
in the fourth instruction in the 22nd, and so forth. 

The computing program may be essentially shortened, if we arrange 
for an automatic change in the indexes (giving the memory location) in 
the second address of the addition instruction. The instruction codes are 
stored in the corresponding locations and they may themselves be con¬ 
sidered as certain numbers. By the addition of suitable numbers to them, 
we can make an automatic change in the instruction addresses. In such 
a method the program for computing the values of a polynomial will 
have the form given in Table 4. 

Table 4. Program for Computing a Polynomial 

Number of j 
the Instruction 

Instruction Code 

Code of the 
Operation 

1st 
Address 

2nd 
Address 

3rd 
Address 

1 Addition 20 _ 27 
2 Multiplication 27 31 27 
3 Addition 27 21 27 
4 Addition 3 28 3 
5 Comparison 3 29 2 
6 Stop 1 

The first instruction serves to transfer the number from the 20th location 
to the 27th in order to have the multiplication instruction in standard 
form. In performing the 2nd and 3rd instructions, we get the values of 
a0x + a,. For further computation it is necessary as a preliminary to 
change by 1 the second address in the addition instruction (the 3rd 
instruction), and this change is made by the 4th instruction. According 
to this instruction we take the number found in the 3rd location, i.e., 
the addition instruction in question (the 3rd instruction) and add to it 
the quantity found in the 28th location. In order to change by 1 the 
2nd address of the 3rd instruction, the 28th memory location must 
contain the following: 

Code of the 1st 2nd 3rd 
Operation Address Address Address 
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After performing the instruction in this way, we have put the 3rd instruc¬ 

tion into the following form: 

Code of the 1st 2nd 3rd 
Operation Address Address Address 

Addition 27 22 27 

This new form is stored in the 3rd memory location in place of the previous 

form of the addition instruction. 

Having obtained this new form by the addition instruction, we may 

repeat the computations, beginning with the multiplication instruction, 

i.e., with the 2nd instruction. The 5th comparison serves for this purpose. 

This instruction compares the newly found instruction in the 3rd location 

with the quantity stored in the 29th location. In the 29th location is 

stored the following: 

Code of the 1st 2nd 3rd 
Operation Address Address Address 

Addition 27 27 27 

This comparison initially tells us that the first quantity (in the third 

location) is less than the second (in the 29th location), and so the process 

of computation passes to the 2nd instruction, shown in the 3rd address 

of the comparison instruction. Thus the multiplication instruction (the 

2nd instruction) and the addition instruction (the 3rd instruction) will be 

automatically repeated, and each time the number of the location in the 

2nd address of the addition instruction will be changed by one (as arranged 

for by the 4th instruction). 

Repetition of the cycle will continue until the 2nd address of the 

addition instruction (the 3rd instruction) reaches the magnitude 27, 

which happens after six repetitions of the cycle. Here the 3rd instruction 

will have the form: 

Code of the 1st 2nd 3rd 
Operation Address Address Address 

Addition 27 27 27 

i.e., the instruction code will be the same as in the 29th location. The 

comparison instruction (the 5th instruction) takes note at this stage of 

the equality of the quantities found in the 3rd and 29th location, so that 

the process of computation passes to the next instruction, i.e., the 6th, 

and herewith the computation of the polynomial is finished. 
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The method of automatically changing, as part of the program itself, 

the number of the location in the addresses of certain instructions is 

widely applied for the solution of many different problems. Together with 

the method of cyclic repetitions, it enables us to perform a very large 

volume of computations with a small number of instructions. 

4. The one-address system. In addition to the three-address system of 

instructions that we have considered, in many machines a one-address 

system is used. In a one-address system each instruction contains, in 

addition to the code of operation, only one address. Performing an 

arithmetic operation with two numbers and placing the result in the 

memory unit calls for three instructions: The first instruction puts one 

of the numbers of the memory unit into the arithmetic unit, the second 

puts in the second number and performs the given operation with the 

numbers, the third places the result in the memory unit. In the course 

of any computation, the result produced is often used only to perform 

the next following arithmetic operation. In these cases one does not 

need to put the result obtained into the memory unit, and for the per¬ 

formance of the following operation one does not need to recall the first 

number. Thus the number of instructions in a program with a one-address 

system is found to be roughly only twice as large as for a three-address 

system. Since a one-address instruction needs a smaller number of locations 

than a three-address system, the amount of space taken up in the memory 

unit by the program will be about the same for both systems of instructions 

(usually in a one-address system of instructions each location of the 

memory unit will contain two instructions). The differences in the two 

different systems of instructions must be taken into account in making 

a comparison of the rapidity of working of the machines. For the same 

rapidity of performing an operation, a one-address machine will perform 

computations about twice as slowly as a three-address machine. 

In addition to these systems, certain machines have a two-address or a 

four-address system of instructions. 

5. Subroutines. Usually the solution of a problem is carried out in 

several stages. Many of these stages are common to a series of problems. 

Examples of such stages are: computing the value of an elementary 

function for a given argument, or determining the definite integral of a 

function already computed. 

Naturally it is desirable for such typical stages to have standard 

subroutines worked out once and for all. If in the course of the solution 

of a problem we are required to carry out standard computations, we 

should transfer the computation at the appropriate moment to one of 
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the standard subroutines. Then at the end of the computations involved 

in the subroutine, it is necessary to return to the basic program at the 

place where it was interrupted. 

The existence of standard programs makes the task of the programmer 

considerably easier. With a library of such subroutines, recorded either 

on punched cards or on magnetic tape, the programming of many 

problems consists simply of setting up some short parts of the basic 

program linking together a sequence of standard subroutines. 

6. Verification of results. On electronic computing machines problems 

are solved that require several million arithmetic operations. An error in 

even one of the operations may lead to incorrect results. Of course, it is 

practically impossible to set up a check system by hand over such a large 

number of computations. Thus the checks and verifications must be 

carried out by the machine itself. Apparatus exists that will verify the 

correctness of the machine’s operations and bring it to an automatic 

stop if an error is discovered. However, this apparatus involves a con¬ 

siderable increase in the size and complexity of the machine and usually 

does not act on all its parts. More promising are the methods of verification 

that are included in advance in the program itself. 

One such method of verification consists simply of repetition of the 

computation, as is so common in hand computation under the name of 

“duplication check.” If an independent repetition of the computation 

produces the same results, we may be sure that there are no random 

errors but this method will naturally fail to reveal the presence of sys¬ 

tematic errors. To exclude the latter we must carry out in advance some 

control computations with previously known answers, and these computa¬ 

tions must involve all parts of the machine. Correctness of the results 

produced in the control computations serves to guarantee the absence of 

systematic errors. 

In addition to this “duplication check,” we may apply more complicated 

methods of verification, depending on the type of problem. For example, 

in calculating the trajectory of a projectile, we may first solve the system 

of differential equations for the two components of the velocity and then 

subsequently solve the single differential equation for the total velocity 

and at each step of the integration verify the formula: 

v* == v*x + rj . 

For the solution of ordinary differential equations, in addition to the 

computation with steps of integration h, we may carry out a second 

computation with steps h/2. This will not only guarantee the absence of 
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random errors in the computation but also will give an estimate of the 

validity of the choice of step size. In computing a table by a recurrence 

formula, we may sometimes compute certain key values by other methods. 

A correct result for the key values is a sufficient guarantee of the correct¬ 

ness of all intermediate values. In some cases verification may consist 

of noting the differences between the results produced. 

In constructing a program it is necessary to provide in advance for 

some form of logical verification of the results obtained. 

Coding of numbers and instructions. Numbers and instructions are 

placed in machines in the form of codes. In most cases the binary system 

of notation is used instead of the ordinary decimal system. 

In the decimal system the number 10 is taken as the base. The digits 

in each position may take one of the ten values from 0 through 9. The 

unit in each successive position is ten times as large as the unit in the 

preceding position. Consequently, an integer in the decimal system may be 

written 

Nl0 = *010° + *,10' + *,10* + - + *J0», 

where *0, *,, ••• , *„ may take the values from 0 through 9. 

In the binary system the number 2 is taken as the base. The digits in 

each position may take only the two values 0 and 1. A unit in each 

successive position is twice as large as a unit in the preceding position. 

Consequently, an integer in the binary system may be written 

N, = *o2° + *,2‘ + - + * J’, 

where *0, *,, •••, *„ may take the values 0 or 1. 

The first few natural numbers in the binary and the decimal system 

are written, 

Binarysystem 0 1 10 II 100 101 110 III 1000 1001 1010 1011 etc. 

Decimal system 0 1234567 8 9 10 11 etc. 

A noninteger is written analogously in terms of negative powers of the 

base. For example, 3^ is written in the binary system as 

11.001. 

The transfer of numbers from one system of notation to another 
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involves specific arithmetic operations that are usually carried out in the 

electronic computing machine itself by special programs. 

Arithmetic operations on numbers in the binary system are carried out 

in exactly the same way as in the decimal system. Here the addition of 

two units in any position produces zero in the given position and carries 

one to the following position. For example, 

1010 + 111 = 10001. 

Multiplication and division in the binary system are simpler than in the 

decimal system, since the multiplication table is replaced by the rules 

for multiplying by 0 and 1. For example, 

1010(10) 

x 101 (5) 

1010 

0000 

1010 

110010(50) 

The choice of the binary system of notation in the majority of electronic 

computing machines is because the arithmetic unit is thereby greatly 

simplified (generally at the expense of brevity in the operations of mul¬ 

tiplication and division) and also the digits in each position are con¬ 

veniently represented, for example, by open or closed relays, the presence 

or absence of a signal in a circuit, and so forth (in the binary system 

the digits in each position can only have the two values: 0 or 1). 

Every digit of a binary number may be represented in the form of the 

presence or absence of a signal in its circuit, or in the state of a relay. 

In this case it is necessary that every digit have its own circuit or relay 

(figure 3) and the number of such circuits will be equal to the number 

of digits (parallel system). A binary number may also be represented in 

the form of a time-pulse code. In this case each digit of a number is 

represented at specific intervals of time on one circuit (series system). 

The time intervals for each digit are created by synchronizing pulses, 

common to the entire machine. 

Corresponding to these two principles, the methods of coding a number 

for an electronic computing machine fall into two categories: one for a 

machine with parallel operation and the other for a machine with series 

operation. In a machine with parallel operation all the digits of a number 

are transmitted at the same time and each digit requires its own circuit. 
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A 

A 
The number 10010111 

A 
A 
i 
(a) 

A. A^A.i_A 

In a machine with series operation the number is transmitted by one 

circuit, but the time of the 

transmission is proportional to 

the number of digits. Thus 

machines with parallel opera¬ 

tion are faster than machines 

with series operation, but they 

also require more apparatus. 

Every electronic computing 

machine has a specific number 

of places for digits. All numbers 

to be dealt with in a computa¬ 

tion must be included in that 

number of places, and the posi¬ 

tion of the decimal point, 

separating the integer part from 

the fractional, must naturally 

be included. 

In certain machines the posi¬ 

tion of the decimal point is 

rigidly fixed; these are the so- 

called “fixed-point” machines. 

Usually the decimal point is 

put before the first place; i.e., 

all the numbers for the com¬ 

putation must be less than one, which is guaranteed by the choice of a 

suitable scale. For complicated computations it is difficult to determine 

in advance the range of the results to be expected, and thus we have 

to choose the scale so as to have something in reserve, a procedure which 

lowers the accuracy, or else we must arrange in the program itself for 

an automatic change of scale, which complicates the programming. 

In certain machines the position of the decimal point is indicated for 

each number; these are machines which keep track of the exponents and 

they are usually called “floating-point” machines. Indicating the position 

of the decimal point is equivalent to representing the number in the form 

of its sequence of digits and its exponent, i.e.. 

JLA .A A A A A A , 
(b) 

Fig. 3. Code systems: 

(a) parallel; (b) series; 

(1 is the code; 2 is the synchronizing pulse) 

jV|0 = 10*Af|'o in the decimal system, 

Nt = 2"N't in the binary system. 

Thus the number 97.35 may be represented as 102 • 0.9735. To represent 

the number in a machine we must indicate both its exponent (p or k) 
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and its sequence of digits. Thus all the digits in the number are made 

use of independently of its size; i.e., every number is represented by its 

entire set of significant digits with the same relative error. This increases 

the accuracy of the computation, especially for multiplication, so that 

in most cases one can dispense with a special choice of scale. 

Increased accuracy and simplified programming in the floating-point 

machines are attained at the expense of some complication in the arith¬ 

metic unit, particularly in the operations of addition and subtraction. 

Since numbers may initially have different exponents, it is necessary to 

provide them with the same exponents before adding or subtracting them, 

in which process the final digits of the smaller number are discarded, thus: 

10* • 0.7587 + 10° • 0.3743 = 10* • 0.7587 + 10* • 0.0037 = 10* • 0.7624. 

The code for a number in the binary system for a fixed-point machine 

consists simply of its sequences of digits (the number is assumed to be 

less than one); for example: 

.00110110000000 = ~. 
128 

In floating-point machines a specific part of the code describes the 

exponent, which is also coded in the binary system. An example of the 

way in which a number is expressed in such a code is 

2* • ^ = 001 l.l 1011000000. 

In addition, it is customary to reserve two places for the algebraic sign 

(for example, in the form 0 or “—” in the form 1), one for the sign 

of the exponent and one for the sign of the number itself. 

Instructions are coded the same way as numbers are, a specific part 

of the code being allotted to expressing the index (in the binary system) 

of the operation and another to the indexes of the memory location of 

each address. 

§3. Technical Principles of the Various Units of a 

High-Speed Computing Machine 

The order of performing the operations in electronic computing machines. 

The performance of each arithmetic operation in a machine in accordance 

with a given list of instructions may be reduced to the following successive 

steps (it is understood that we are talking about a three-address system 

of instructions). 
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1. Transfer of the first number from the memory unit to the arithmetic 

unit (the location of this number in the memory unit is given in the first 

address of the instruction code). 

2. Transfer of the second number from the memory unit to the arith¬ 

metic unit (its location is given in the second address of the instruction 

code). 

3. Performance by the arithmetic unit of the given operation on these 

numbers in accordance with the operation code. 

4. Transfer of the result from the arithmetic unit to the corresponding 

location in the memory unit (the index of this location is given in the 

third address of the instruction code). 

5. Selection from the memory unit of the next instruction, whereupon 

the machine begins to carry out the next operation. 

In the machine the instruction code is accepted in the “instruction 

memory block” (IMB, figure 4). An electronic commutator (EC) trans- 

CBB 

Fig. 4. Structural diagram of an electronic digital computer. 

forms the binary number of the operation code into an activating voltage 

in one of its output circuits corresponding to the given arithmetic oper¬ 

ation. This voltage through the control unit (CU) prepares the circuits of 

the machine to perform the required operation. 

In order to select the first number, the first address code of the instruc¬ 

tion (Al), is transferred via the address code bus bars (ACBB) from the 

instruction memory block (IMB) to the control memory block (CMB). 

The signal for the transfer of this code is given by the control unit (CU) 
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of the machine. From the location the memory unit (MU) which cor¬ 

responds to the code number transmitted the first number is selected and 

via the code bus bars (CBB) is placed in the arithmetic unit (AU). The 

opening of the input circuits in the arithmetic unit is effected by a cor¬ 

responding signal from the control unit (CU) of the machine. 

The second number is selected in a similar manner. A signal from the 

control unit (CU) of the machine transfers the code of the second instruc¬ 

tion address (A2) from the instruction memory block (IMB) to the 

control memory block (CMB). The second number, taken in this way 

from the memory unit (MU), is transferred via the code bus bars (CBB) 

into the arithmetic unit (AU). 

The arithmetic unit (AU) performs the given operation with the numbers 

in accordance with the operation code inserted in it previously. 

In order to effect the transfer of the result thus obtained into the 

memory unit the third address code of the instruction (A3) is transferred 

via the address code bus bars (ACBB) from the instruction memory 

block (IMB) to the control memory block (CMB). The signal for the 

transfer of this code is given by the control unit (CU) of the machine. 

The memory location corresponding to the number thus obtained is then 

selected and its input circuits are opened. The rules for the selection or 

insertion of numbers are given by signals from the control unit (CU) of 

the machine. The signal from the control unit (CU) of the machine 

transfers the result obtained from the arithmetic unit (AU) to the code 

bus bars (CBB), via which the number is placed in the chosen location 

of the memory unit. 

The instruction control block (ICB) is provided for the selection of the 

instructions. In this block is given the number of the chosen instruction. 

Usually the instructions go in numerical order so that, to give the number 

of the following instruction, it is necessary that the number found in the 

instruction control block (ICB) be increased by one. This is done by the 

control unit of the machine (circuit 4- 1). The instructions are stored in 

the memory unit. For selection of the next instruction the newly obtained 

number is transferred via the address code bus bars (ACBB) from the 

instruction control block (ICB) to the control memory block (CMB). 

The signal for this transfer comes from the control unit of the machine 

(CU). The new instruction taken from the memory unit (MU) is transferred 

via the code bus bars (CBB) into the instruction memory block (IMB), 

the output circuits of which are opened by a signal from the control 

block of the machine. This concludes one cycle of the operation of the 

machine. In the next cycle the machine performs the newly received 

instructions. The normal succession of instructions in numerical order 

may be altered by performing a control operation; for example, a com- 
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parison instruction. This instruction does not call for any arithmetic 

operation but specifies the course of the computational process. If the 

first number is less than the second, then it is necessary to go over to the 

instruction whose number is shown in the third address. But if the first 

number is greater than or equal to the second, then we pass on to the 

next instruction. 

In transferring the comparison instruction code to the instruction 

memory block (IMB) an electronic commutator (EC) transforms the 

binary number of the operation code to an activating voltage in that one 

of its output circuits which corresponds to this operation. This voltage 

prepares the circuits of the machine for performing the operation of 

comparison. 

The selection from the memory unit of the two numbers whose locations 

are given in the first and second addresses of the comparison instruction 

is carried out in exactly the same way as an arithmetic operation. The 

comparison of the numbers in the arithmetic unit (AU) may be carried 

out by subtracting the second number from the first. Depending on the 

sign of the result the control unit (CU) either transfers the code number 

of the next command from the third address (A3) via the address code bus 

bar (ACBB) to the instruction control block (ICB), or adds one to the 

number which is found in this block (circuit + 1), exactly as in performing 

an arithmetic operation. After the number of the next command has been 

placed in the instruction control block (ICB), its selection from the 

memory unit is effected in the same way as in an arithmetic operation. 

The arithmetic unit and the control unit. Electronic computing ma¬ 

chines make use of present-day devices for electronic automatization. 

Basically the units of the machine work on the crude principle of “yes” 

or “no”; i.e., essentially there either is a signal or the signal is absent. 

Consequently, we may vary the parameters of an electronic circuit rather 

widely without affecting the operation of the machine. 

One of the most widely used elements applied in electronic machines 

is the flip-flop or trigger cell. The simplest flip-flop (figure 5) consists of 

two amplifiers with plate resistors Ra , connected by the divider resistors 

/?, and R2. The bias established (Ob) is chosen so that one of the tubes 

operates and the other does not. Since the two halves of the circuit are 

symmetric, either tube may be closed; i.e., the circuit has two stable 

positions of equilibrium. In fact, if the left tube is closed, and the right 

one is open, then on the plate of the left tube (Oj) there will be a high 

voltage, and on the plate of the right tube (0O) a low voltage (because 

of the voltage drop on the plate resistance Ra from the current through 

the tube. These voltages are transferred through the divider resistors /?, 
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and Rz to the grids of the opposite tube, and consequently there will be 

a small voltage on the grid of the left tube and a high voltage on the grid 

of the right tube. With a proper choice of the parameters of the circuit, 

these grid voltages will keep the tubes in the given state. 

Fig. 5. The circuit of a flip-flop. 

Similarly, if the left tube is open and the right one closed, there will be 

low voltages on the plate of the left tube and on the grid of the right 

tube and high voltages on the plate of the right tube and on the grid of 

the left tube. 

The flipping of a flip-flop from one state to the other may be brought 

about by negative pulses placed on the grids of the tubes through diodes. 

If we place a negative pulse on the grid of the left tube, then the left tube 

is closed, and its plate voltage will increase. This produces a higher voltage 

on the grid of the right tube, which opens the right tube. In this manner, 

the trigger assumes the first position of equilibrium (high voltage on the 

plate of the left tube). But if a negative pulse is placed on the grid of the 

right tube, the flip-flop assumes the second stable equilibrium position 

(a high voltage on the plate of the right tube). If a negative pulse is placed 

!C !0 



§3. TECHNICAL PRINCIPLES 355 

simultaneously on the grids of both tubes, then each such pulse will 

cause the flip-flop to move from one state of equilibrium to the other. 

If we consider the circuits by which pulses are placed on the grids of 

the tubes as inputs of the system and the plate voltages as outputs, we 

have the diagram in figure 6 for the operation of a flip-flop. 

The properties of flip-flops make them convenient for use in the various 

units of an electronic computing machine. To one equilibrium state of the 

flip-flop we may assign the code value “0,” for example, to high voltage 

on the right output (O0)—and to the other the code value “1,” high 

voltage at the left output (O,). Correspondingly, the inputs may be 

denoted by and Ic (the counting input). 

Flip-flops are used in electronic machines for the temporary storage 

of codes (receiving registers) (figure 7). Initially all the flip-flops are set 

1 0 

'e 

Fig. 7. Diagram of a receiving register of flip-flops. 

in the code position “0” by means of negative pulses (/E) on the zero 

inputs of all cells. The code of a number or of an instruction is placed 

on the unit inputs of the flip-flops in the form of negative pulses. In 

those positions in which there are code pulses the flip-flops pass to the 

code position “1” and hold this position until they receive an extinguishing 

pulse (/E). Receiving registers are used in the arithmetic units for storing 

the code of an instruction, for giving the number of a required location 

of the memory unit, and so forth. 

A second realm of application of flip-flops is in addition circuits. Here 

use is made of the property of a flip-flop that it changes its state of 

equilibrium every time a negative pulse is applied to the counting input 

(simultaneously to both inputs). If the flip-flop starts in the code position 

“0,” then the application of a pulse moves it into code position “1.” 

But if the flip-flop starts in code position “1,” then the application of a 

pulse moves it to code position “0.” In the absence of a pulse the flip- 

flop remains in its previous position. The initial position of the flip-flop 
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may be considered as a code for a given digit of the first position of the 

second number. Here it is easy to see that the behavior of the flip-flop 

exactly corresponds to the rules of addition of binary numbers for one 

digit (0 + 0 = 0; 0 + 1 = 1; I + 0 = I; I + 1 = 10, i.e., “0” in the 

given position and the carrying of “I” to the next position). In order 

that the addition circuit may work for several binary digits, it is necessary 

to guarantee the carry from one digital position to the next. A carry in 

the original position is caused by the addition of two units, i.e., by the 

passage of the flip-flop from the code position “1” to the code position 

“0.” In this passage the voltage on the left output of the trigger is changed 

through a circuit containing 

a condenser and a resistor, 

then in leaving the circuit 

it causes a negative pulse. 

Through a delay line this 

carry pulse may be directed 

into the counting input of 

the next position. 

Figure 8 represents the 

simplest addition circuit with 

flip-flops. Initially all the 

flip-flops are set in the code 

position “0" by a pulse /„ 

placed on their zero inputs. 

On reception of the code of the first number, which appears in the form 

of negative pulses on the counting inputs, the flip-flops assume a position 

corresponding to the code of the first number. On reception of the code 

of the second number, there occurs digit-by-digit addition of the binary 

numbers, and in those positions where the addition has produced two 

ones, there arise carry pulses that after a time delay ta are applied to the 

counting inputs of the flip-flops in the higher positions. These carry pulses 

may move the flip-flops from the code position “1” to the code position 

“0.” In this case there arises a carry pulse to the next higher position. 

In the worst case, when in the addition of the codes all the positions are 

set in the code position “1,” and the lowest position passes from code 

position “1” to code position “0,” the carry pulse arises successively in 

each position after a time delay ta . In this manner, the total time required 

for the passage of the carry pulses will be equal to one time delay mul¬ 

tiplied by the number of positions. More complicated electronic circuits 

of flip-flops allow the elimination of such step-by-step carries with con¬ 

sequent shortening of the time required for addition. 

For multiplication of numbers an arithmetic unit of flip-flops (figure 9) 

from high to low. If this voltage is passed 

Fig. 8. Addition circuit 
with flip-flops. 
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has two receiving registers for storage of the multiplicand and the 

multiplier (R,, R2) and with them an adder (Add). Multiplication is 

carried out in the follow¬ 

ing manner. The code of 

the multiplier is shifted 

one place to the right. If 

in the lowest place the 

multiplier has the code 

“1,” then in the right 

output of the register of 

the multiplier there arises 

a pulse that is applied to 

the circuits governing the 

application of the code in 

the multiplicand register 

to the adder (the circuit 

+ N). After this has been 

done the partial product 

in the adder is moved one place to the right and the operations are 

repeated. In this manner the sum of the partial products is accumulated 

in the adder. These operations are repeated as many times as there are 

digit positions in the number codes. In the multiplication of two numbers 

each of which takes up “/»” positions, the product will take up “2n" 
positions. The highest "n" positions of the product are distributed in 

the adder, and the lowest “n" positions of the product may be entered 

one after the other, as the shifts to the right successively set free the 

positions in the register of the multiplier. With the completion of the 

multiplication, the lowest “n" digits of the product are placed in the 

multiplier register. The time required for multiplication is roughly equal 

to the time required for addition multiplied by the number of digit 

positions in the number code. 

A code shift with flip-flops is produced by the circuit illustrated in 

figure 10. Applying the shift pulse (/„h) to the zero inputs of all the flip- 

flops places them in code position “0.” From these flip-flops which are 

in the code position “1,” carry pulses arise which put the adjacent flip- 

Fig. 9. Multiplication circuit 
with flip-flops. 

Fig. 10. Circuit for shifting a code with flip-flops. 
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flops into code position “1” with a time delay ta . In this way, every 

application of a carry pulse moves the code one place. 

An arithmetic unit with flip-flops which consists of two receiving 

registers and an adder also enables us to divide one number by another. 

Usually an arithmetic unit with flip-flops is constructed so as to serve 

in a universal way for all the arithmetic and logical operations. 

Flip-flops are also used in electronic machines for counting pulses, 

which is necessary in a number of different control arrangements. The 

circuit for an electronic counter (figure 11) differs from the circuit for 

Fig. 11. Circuit of an electronic computer 
with flip-flops. 

an elementary adder (figure 8) only in the omission of the delay line in 

the carry pulse links. A counter of this sort can count up to 2" pulses 

(n is the number of places in the counter), after which the position of 

the counter is repeated. At the cost of some complication in the system 

it is possible to construct an electronic counter for an arbitrary number 

of pulses (not equal to 2"). 

For the realization of logical operations and control circuits in electronic 

computing machines, we make use of coincidence units (the so-called 

“AND" elements), of inverters, and of divider diode links (“OR” ele¬ 

ments). 

The AND elements work on the logical principle of “both—and” 

(“one and also the other’’); i.e., at the output of such a unit a signal 

will occur only in case there are signals at all inputs. Inverters work on 

the logical principle of “yes—no”; i.e., if there is a signal on an input, 

then there will be no signal at the output, and conversely, when there 

is no signal on the input, then there is an output signal. The OR elements 

obey the logical law “either—or”; i.e., at the output there will be a 

signal in the case when there is a signal at any one input. 

AND elements are widely used for “channeling” electric signals in 

a machine, i.e., for directing signals to the required circuits. For example, 

figure 12 illustrates a code bus bar for one of the digits of a number. This 

code bus bar is joined through an AND element to the inputs and outputs 

of the locations of the memory unit, to the inputs of two receiving registers 

of the arithmetic organ and to the output of an adder. Applying a control 
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signal to the output of an AND element of any location of the memory 

unit, we thereby put the code stored in this location onto the code bus 

bar. If we simultaneously put a control signal on the input AND elements 

of the first receiving register, for example, then the code on the bus bar 

is entered into the first register. Similarly, if we 

CBB 

put a control signal on the output AND units of 

the adder, then the code which is produced in the 

adder is transferred to the code bus bar. If here 

we place a control on the AND-circuit inputs of 

any location of the memory unit, then the codes 

being transferred by the code bus bars will be 

received in this location. Of course, before 

receiving codes in locations of the memory unit 

or in the receiving registers of the arithmetic 

unit, it is necessary to clear the codes which 

were in them previously. 

This example does not exhaust all the various 

applications of AND elements for channelling 

electric signals in an electronic computing 

machine. They also are widely applied in the 

Fig. 12. Channeling Fig. 13. Circuit of an 
of signals by an AND electronic commutator with 

element. four output links. 

memory unit, in the arithmetic unit, and in the control unit of the 

machine. 

In addition to solving problems of channelling signals, AND elements 

perform more complicated functions. For example, when we are having 

access to the location of the memory unit, there often arises the problem 
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of converting the number of the location (given in binary form) to a 

control voltage placed on this location. This problem is handled by the 

electronic commutator, constructed from AND elements. Figure 13 

illustrates a circuit for an electronic commutator with four output links. 

The number of the location is given in the form of a binary code on 

two flip-flops. All four possible combinations of the state of these 

locations are given in Table 5. 

Table 5. 

2nd Trigger 
L 

1st Trigger 

Code Left 
Output 

Right 
Output 

Left 
Output 

Right 
Output 

“00” L H L H 
“01” L H H L 
“10” H L L H 
“11” H L H L 

L = Low voltage at ouput, H = i High voltage at output 

If in an AND element the high voltage is controlling, then to get a 

signal on the zero-output link it is necessary that the inputs of the AND 

elements be connected to the right outputs of the first and second flip- 

flops. In this case on the output of this AND element, there will be a 

signal only when the flip-flops are found in the code position “00.” 

Similarly, to get a signal on the first output link (the code “01"), the 

inputs of the corresponding AND element must be connected to the left 

output of the first flip-flop and to the right output of the second flip-flop. 

The connections of the AND elements for the second (code “10”) and 

third (code “11") links will also be made on the same principle. 

In a number of cases the AND elements together with inverters and 

OR elements are used in the construction of the arithmetic units. For 

digit-by-digit addition of numbers with two binary digits, we have the 

four possible combinations in Table 6. 

Table 6. 

| 
Value of the Addends Value Transfer 

No. of the to the next 
1st 2nd sum Higher Order 

i 0 0 0 0 
2 0 ! i 1 0 
3 1 0 1 0 
4 1 l 0 1 
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These relations may be realized, for example, by the circuit shown in 

figure 14. Such circuits are called “semiadders.” The carry signal for the 

higher of the two positions is 

produced by an AND element 

(combination 4). To get the 

signal of the sum (combinations 

2 and 3), it is sufficient to have 

a signal on one of the two 

outputs with the absence of an 

output carry signal, which may 

be done by an AND element, 

an inverter, and a diode link 

unifier. For addition of num¬ 

bers it is necessary to consider 

not only the digits in a given 

position but also the carry from 

the preceding position. The 

carry may be taken as repeated addition to the result produced by carrying 

from the previous position. In this manner, the union in series of two 

semiadders fully guarantees the addition of one position in two binary 

numbers. 

The circuit of an adder for one position may also be realized directly 

by considering the possible combinations and taking account of carrying 

from the preceding lower position. 

It is most effective to use adder circuits in AND elements in machines 

with sequential code distribution. In this case the code of a number is 

transferred by one of the code bus bars. The digits of the number follow 

one after another at strictly determined intervals of time. In this case 

for the addition of numbers, we may use a one-place adder (figure 15). 

The codes of both numbers are 

placed in advance in the lowest 

positions on the two basic inputs of 

the one-place adder. The carry out¬ 

put is run through a delay line to 

the third input of the adder. The 

time of the delay is taken equal to 

the interval between pulses. In this 

manner, if in the addition of any 

digit of the numbers there occurs a 

carry pulse, it is placed in the input 

of the adder at exactly the same time 

as the occurrence of the pulses in the next higher position. The time 

1st Dumber 

2nd number 

1——I 

Fig. 15. Circuit for a series 

adder with AND elements. 

Sum 

ADD 
Carry 

-1st summand 

-2nd summand 

Carry Sum 

Fig. 14. Circuit for a 

one-place semiadder. 
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required for addition of two numbers is equal to the time required for 

the passage of the code of one number. 

Multiplication of two numbers in a series code may also be done with 

a one-place adder, and here it is necessary to put the numbers through 

the adder a number of times equal to the number of positions occupied 

by the number code, i.e., the time required for multiplication is “n” times 

as long as the time for addition. 

Memory units. The possibilities of a machine are to a great extent 

determined by the capacity of its memory unit, i.e., by the number of 

numbers that can be stored in the machine. For contemporary universal 

electronic computing machines this capacity is usually 500-4,000 numbers. 

For code storage it is possible to use flip-flops. However, the amount 

of apparatus here turns out to be so large that this form of memory unit 

is almost never used. 

For machines with series operation, widespread application has been 

found for memory units consisting of electroacoustic mercury tubes 

(figure 16). An electric signal in the form of a pulse is placed on a quartz 

AAA—n 

Fig. 16. Basic circuit for dynamic storage of a code 
in an electroacoustic tube: 

(1) mercury tube; (2) transmitting quartz crystal; 
(3) receiving quartz crystal; (4) transmitted form 

of the pulse; (5) received form of the pulse. 

crystal at the input of the tube. The quartz crystal has the property of 

transforming an electrical pulse into a mechanical oscillation, and con¬ 

versely. In this manner the entering electrical signal is transformed into 

a mechanical (ultrasonic) vibration, which is propagated along the tube 

with a specific velocity. When the signal reaches the end of the tube, 

it falls on a receiving quartz crystal and is transformed again into an 

electrical pulse. After being amplified and put into its original form, the 

signal is again directed toward the input of the tube. In this manner, 



§3. TECHNICAL PRINCIPLES 363 

the codes of the numbers introduced in the form of pulses in the mercury 

tube are circulated indefinitely in the tube. To introduce the numbers 

into the tube, a code from the machine is placed on the input of the tube, 

and simultaneously the circuit for the return of pulses from the end of 

the tube is broken for the same period of time. For the selection of numbers 

in the corresponding instant of time, when the required code reaches the 

end of the tube, the output links are opened, thereby transmitting the 

code to the other units of the machine. The entry and removal of the 

numbers is accomplished automatically by appropriate electronic circuits. 

Usually, with the goal of simplifying the apparatus, several numbers are 

stored in each mercury tube. Thus for access to a number, it is necessary 

to wait while the required code goes to the end of the tube. The more 

numbers there are stored in the tube, the greater the time required to 

find a required number. 

Series machines with memory units composed of electroacoustic 

mercury tubes operate at a rate of 1,000-2,000 operations per second. 

For memory units one often applies the principle of magnetic recording 

of electrical signals, similar to the recording of sound. The record may be 

made either on a magnetic tape or on a continuously revolving drum 

covered with a ferromagnetic material (figure 17). Along the generator 

of the drum there are placed magnetic heads. If at a specific instant of 

time current pulses are passed through the windings of the magnetic 

heads, then in the corresponding places on the surface of the drum the 

signals will be recorded in the form of residual magnetization. With the 
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Fig. 17. Basic scheme of a magnetic drum: 

(1) current through the coil; (2) residual magnetization; 
(3) emf in the coil in read-out. 
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rotation of the drum the field resulting from the residual magnetization, 

passing under the heads, causes in them electric signals, which are 

amplified and transmitted to the other units of the machine. 

A magnetic drum may be used both for a series system and for a parallel 

system of transmitting codes. However, the drawback of electroacoustic 

mercury tubes, namely the delay in access to numbers, is even more 

characteristic of the magnetic drum. Thus memory units with magnetic 

drums are used for machines of comparatively low speed (of the order 

of several hundred operations per second). On the other hand, a magnetic 

drum allows a marked increase in the capacity of the memory unit with 

only a tolerable increase in the amount of apparatus. Thus the magnetic 

drum and the magnetic tape are often used in universal machines as com¬ 

plementary (exterior) memory units in addition to fast-acting (operative) 

memory units. 

In high-speed electronic computing machines with parallel operation, 

cathode-ray tubes are often used for the memory unit (figure 18). If the 

electron beam is directed at any point of the screen, then at this point 

there is accumulated an electric charge. The charge will be preserved for 

a considerable time, so that it is possible to record number codes on the 

screen. In the process of making a computation, a beam of electrons is 

again directed to the required point. If the given element has not been 

charged, it now receives a charge, and through the signal plate and the 

output amplifier there emerges a code pulse. But if the element is charged, 

the signal does not emerge. In this way we can determine whether a 

signal has been recorded at a given point or not. After access to the code 

we must re-establish the previous state of the given element, which is 

done automatically by a special circuit. In exactly the same way it is 

necessary to renew the code recordings periodically, in order to avoid an 

essential change in the charge by stray electrons and leakage through the 

dielectric. 

Fig. 18. Basic scheme of a cathode-ray tube: 
(1) source of electrons; (2) deflection plates; 

(3) screen; (4) signal plate. 
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Usually there are 1,024 (32 x 32) or 2,048 (36 x 64) points distributed 

over the screen. The direction of the beam of electrons to the required 

point is accomplished by appropriate voltages on two pairs of deflecting 

plates. 

In machines with parallel operation, every digit of a binary number 

requires its own cathode-ray tube and access to number is made simul¬ 

taneously for all tubes. The access time, including the entire operation of 

the element, may be reduced to a few microseconds. 

Recently use has been made of memory units with magnetic elements 

that have rectangular hysteresis loops (figure 19). If we put a positive 

signal through the coil, then 

the core is positively mag¬ 

netized and for a negative 

signal it will be negatively 

magnetized. 

With the removal of the 

signal, the core remains mag¬ 

netized either positively or 

negatively. Thus, the state of 

the core characterizes the signal 

recorded. In the computing 

process, there passes through 

the coil a signal of specific 

polarity, for example, a positive 

one. If in this case the core was 

magnetized negatively, then a 

remagnetization will occur (a 

change in the magnetic flux), 

and in the output coil there will be induced an electromotive force, which is 

fed into an amplifier. But if the core was magnetized positively, then a 

change in its state will not take place, and no signal will arise in the output 

coil. In this way it is possible to distinguish which signal has been placed on 

a given element. Of course, after access has been had to the code, it is 

necessary to restore the original state of the core, which is done by a 

special circuit. 

§4. Prospects for the Development and Use of 

Electronic Computing Machines 

The use of electronic computing machines will inevitably have a great 

influence on the development of many fields in contemporary science and 

technology, especially in the physical and mathematical sciences. Thus it 
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Fig. 19. Basic scheme of a memory 
element with a rectangular 

hysteresis loop: 
(1) input coils; (2) output coils. 
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is appropriate for us to indicate the basic prospects for further application 

of computing machines and their significance for mathematics. 

Further extension of the areas of application of mathematical machines; 

1. Improved machines. At the present time there is continuous and 

intensive technological progress going on in the production of high-speed 

computing machines, in further improvement of their construction, and 

in the use of new physical principles and of combinations of new types. 

Thus we may expect better technical properties for these machines 

(speed, capacity of the memory, regularity, and reliability of operation), 

and also a notable simplification in their construction and use which will 

guarantee their widespread distribution. 

The diversity of the types of the machines will be another factor 

ensuring their widespread use. Along with powerful machines of enormous 

capacity there will be the small-gauge machines that are simple to use 

and are within the purchasing power of any scientific or planning institute 

or of a factory; in addition to the universal ones, there are simpler special 

machines, intended for some specific range of problems; besides the 

purely digital machines other types have been invented, which accept 

data from certain devices, perform digital calculations on them, and then 

give out the results again continuously in the form of curves or of values 

of parameters controlling various units of the machine. 

2. Better programming. A second path to new effectiveness in the use 

of these machines is further improvement in methods of programming. 

The construction of programs in the usual manner, described in §2, is 

easy for comparatively simple mathematical problems; in actual problems 

of any magnitude, it involves very complicated and detailed labor. This 

work may be lightened to a certain extent by the use of a “library” of 

standard subroutines, set up permanently for the calculation of basic 

functions and for performing certain necessary mathematical operations, 

such as inversion of a matrix or numerical integration. In spite of this, 

the fitting of subroutines into the basic program, addressing and re¬ 

addressing the results, and testing and rearranging the program is a 

quite complicated and detailed task calling for definite skill. This fact 

may essentially delay the setting up of new problems for electronic 

machines. 

There are two possibilities for further development in this direction. 

One of them consists of constructing the program automatically by using 

the machine itself for this purpose, i.e., by converting the basic formulas 

and the logical structure of the problem, placed in the machine in coded 

form, into the desired program through the operation of the machine 

in accordance with a special “programming program.” 
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The second direction consists of having the machine operate on a 

certain special universal program, which immediately examines and 

performs the operations in accordance with a general plan of computation 

introduced into the machine; this general plan would contain a number 

of important problems (for example, the solution of a system of equations) 

and, without setting up the detailed working of the program, would 

.guarantee that the correct results were worked out and assigned to each 

particular problem. 

3. More intellectual tasks. Further progress in the application of 

computing machines in mathematics is connected with the use of the 

machines for the performance not only of numerical calculations but 

also of the standard calculations of analysis. 

Basically such a possibility is, in well-known cases, altogether prac¬ 

ticable. For example, if we describe a polynomial by its set of coefficients, 

then such operations as multiplication and division of polynomials 

consist of arithmetic operations on sequences of coefficients, which are 

easily programmed on machines. By the use of specific coding in describing 

a function, it is completely possible to construct a program which gives 

the derivative of an elementary function (described in the same code), 

i.e., which allows one to perform the analytic process of differentiation. 

All these facts ensure the possibility in the future of solving problems by 

a specific method (for example, of solving a system of differential equations 

by means of power series), with complete carrying out of all the analytic 

and numerical calculations. In this manner, computing machines may be 

used for performing quite subtle and typically intellectual tasks (but only 

of a standard character), just as the present machines of the everyday 

world have replaced the physical labor not only of the stevedore but 

also of the seamstress. 

The influence of high-speed machines on numerical and approximative 

methods. The means and instruments used in any task naturally influence the 

methods of the work itself. For example, trigonometric formulas computed 

by using logarithms are unsuitable for use on computing machines, on 

which only multiplication and division can be carried out directly. The 

use of a desk machine calls for entirely different computational schemes 

in approximation methods (for example, nondifference schemes in dif¬ 

ferential equations). 

The fundamental changes in computational instruments and the 

possibilities that have been opened up by the use of electronic computing 

machines have naturally brought about a change of attitude not only 

toward the methods of computational analysis but also, to a great extent, 
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toward the problems of mathematics in general and their applications. 
Let us consider a few questions where the changes are most evident. 
Mathematical tables and other ways of introducing functions into the 

computation. First of all, electronic machines made a fundamental 
change in our powers of computing tables. In place of a single table 
of functions, we witness an annual output of hundreds of tables, including 
complete and exact tables for all the basic special functions, not only 
for one but for several variables. But at the same time an essential change 
must be made in the structure of the tables. For use in high-speed machines, 
compact tables are appropriate, containing widely spread basic values 
and designed for interpolation of a high order. 

In many cases, in place of tables, it is convenient to use other methods 
of introducing functions into the machines, namely polynomials of best 
approximation over subintervals, expansions in continued fractions, 
approximating formulas based on numerical calculation of an integral 
which represents the function, and so forth; all of these may profitably 
be introduced, in various cases, into the program of computation of a 
given function. 

Special functions and partial analytic solutions. The special functions 
themselves and the solutions of problems in finite analytic form still 
retain their significance for qualitative investigation of a problem and for 
clearing up the character of its singularities, both of which are important 
for a numerical solution. In certain large-scale problems, the use of such 
special functions may provide the most economical means of finding the 
solution numerically. Nevertheless, the construction in many particular 
cases of an exact or approximate solution, by means of complicated 
apparatus or of the special functions that were formerly introduced for 
greater ease of computation, has turned out to be a mistaken policy. 
For machine calculations it is much simpler and shorter to find the 
solution by general numerical methods without making use of any of the 
analytic representations discussed earlier. 

Thus the very considerable efforts that have been made to put into 
complicated analytic form the solutions of various particular problems 
in technology and mechanics have in many cases turned out to be wasted. 

The choice of computational methods. It is incorrect to say that, because 
of the high productivity of electronic machines, there is no need to develop 
approximating methods further and that we may always use the most 
primitive methods. In reality, only for the simplest one-dimensional 
problems where, independently of the choice of method, the calculation 
will not run to more than a few thousand steps, can the solution be 
found on the machine in a few seconds or minutes. 

For the systematic solution of newer, more complicated problems the 
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number of steps may well amount to several hundred million, so that a 

proper choice of methods to decrease this number is quite essential. 

Consequently, it is a matter of great practical importance to work out 

effective methods of approximation, especially for multidimensional 

problems such as interpolation of functions of many variables, computa¬ 

tion of multiple integrals, solution of systems of nonlinear algebraic 

or transcendental equations, solution of three-dimensional integral 

equations, systems of partial differential equations, and so forth. 

At the same time there has been a considerable change in our attitude 

of mind in estimating the value of approximative methods; they must be 

judged by the ease with which they can be carried out on the machine 

or by their universality, that is, by the extent of their applicability to 

massive problems. Methods lose a great deal in value if they depend on 

special peculiarities of the problem or on the skill of the person who is 

directing the computation 

The greatest value must be attached to universal methods that apply 

to a wide range of problems: difference methods, variational methods, 

the gradient method, iterative methods, linearization, and so forth. 

Of course, in choosing a computational method and the manner of 

carrying it out, one must remember that the method is in fact carried 

out on the machine, so that in some cases one ought to take into account 

the peculiarities of construction of the given machine. In particular, one 

must consider maximal use of the operative memory, minimization of the 

data introduced from outside, the possibility of introducing intermediate 

checks, and the convenience of programming the problem. 

But one must not think that the machine can carry out only the simplest 

methods, based on one kind of operation. The wide possibilities in 

programming and the latest improvements in its methods allow us to 

carry out very complicated computational programs with many different 

branches, so that we can change the course of the computation according 

to the results obtained, which is hard to do even with hand computations. 

The only essential requirement is that all these possibilities be completely 

provided for in advance. 

Also one must not think that no methods can be carried out which 

require algebraic operations. As mentioned above, it is also completely 

possible to carry out some of the operations of analysis. 

Significance of the estimates of error. In estimates of error for approxi¬ 

mation methods, greater significance must be attached to those of an 

asymptotic character, since large values of n (for example, the number 

of equations replacing an integral equation by an algebraic system), 

small steps in difference methods, and so forth, are fully realizable on 

high-speed machines. In any comparison of the value of various approxi- 
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mative methods, primary consideration must be given to asymptotic 

estimates describing the rapidity of convergence of the method. 

To increase the usefulness of machine methods, greater attention must 

be paid to a posteriori estimates of the error; that is, estimates made on 

the basis of the solution already computed. Such estimates may be in¬ 

cluded in the program and will then help to determine the future course 

of the computation. For example, if it is seen that the error is unacceptably 

large, the computation may be automatically repeated with steps decreased 

by half. In this connection a posteriori estimates may turn out to be 

more convenient and practical than a priori ones, which are inevitably 

too high and considerably more complicated. 

The possibility of theoretical analysis of the problem. There is still 

another possible use for the information obtained in the numerical 

solution of a problem. In fact, by applying the methods of functional 

analysis to the approximation obtained, we may judge the existence and 

uniqueness of the solution, and also establish the range of the solution. 

Since the investigation of such questions by purely theoretical methods 

is sometimes extremely complicated and lengthy, and in many cases 

altogether impracticable, the possibility of making use for this purpose 

of numerical calculations produced on the machine is undoubtedly of 

interest. 

New problems in numerical methods. The sharp increase in compu¬ 

tational possibilities and the accumulation of skill in their use has given 

rise to an entirely new range of problems in the investigation of numerical 

methods. Instead of being used in isolated cases as in the past, the solution 

of systems of linear equations with a large number of unknowns has now 

become established as a fixed element in the solution of mathematical 

problems. This fact has given great practical importance to the following 

question: How important for the accuracy of our determination of the 

unknowns is the influence of rounding off, not only of the coefficients but 

also of various processes in the course of the solution? This question 

has led to a series of interesting investigations. 

The possibility of numerical integration on the machine of a system 

of differential equations over a large interval with small steps has given 

acute importance to the question of stability of the process of numerical 

integration. Experimental analysis of this question and subsequent 

theoretical investigation have produced a considerable change in our 

estimates of the value of various methods of numerical integration of 

differential equations. 

Questions of stability have primary significance also for the application 

of difference methods to partial differential equations. 

New methods. The possibility of using machines had led to the 



§4. PROSPECTS FOR THE DEVELOPMENT AND USE 371 

appearance of completely new types of approximative and numerical 

methods or on the other hand has made it quite possible and convenient 

to employ the older methods in cases where up to now they had seemed 

completely impracticable. A characteristic example is the method of 

random sampling or, as it is often called, the “Monte-Carlo method.” 

This method consists of finding a probability problem whose solution 

(probability, mathematical expectation) is identical with the desired 

quantity. In this probability problem the solution is found experimentally, 

by random sampling, as the mean value in a series of experiments. For 

example, to find the area of a figure defined by the inequality F(x, y) ^ 0 

and contained in the square (0, 1; 0, 1), we make as long sequence as 

we like of random choices of pairs of numbers (x, y) contained in this 

square and then determine what fraction of these pairs satisfy the given 

inequality. Of course, such a method will be very ineffective if the trials 

are made by hand, but if they are done on a machine, then it is fully 

practicable. The trials themselves may be carried out by means of a 

table of random numbers. For certain problems, e.g., for calculating a 

multiple integral without great exactness, such a method may even be 

more effective than any other. 

A similar method may also be used for the problem of inverting a 

matrix, if we apply it to samples forming a Markov chain, and also for 

the solution of partial differential equations, if we have found a stochastic 

(probabilistic) process connected with it. 

The significance of high-speed machines for mathematical analysis, 

mechanics, and physics. In mathematical analysis great interest and 

practical importance is attached to investigations of multidimensional 

problems leading to the integral equations and boundary-value problems 

of mathematical physics. These investigations and the resulting methods 

of solution are no longer impracticable but will now be put into effect 

as a result of the new computing techniques, especially since the solution 

of such problems is of urgent importance at the present time. 

Of course, the value of these newly developed methods must be judged 

by the ease with which it is possible to put them into practice. 

On the other hand the possibility, thanks to machines, of carrying out 

with sufficient exactness a computation involving a large number of 

trials has led to an enormous extension in the range of application of 

“mathematical experiments” for the preliminary investigation of a 

mathematical problem and to a great increase in their effectiveness. This 

fact has made it important to work out applications of this Monte-Carlo 

method not only in general but also for particular problems; for example, 

the qualitative investigation of differential equations. 
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It is interesting also to note that the machines may be used in problems 

of analysis not only in applications but also for purely theoretical ques¬ 

tions. Thus machine computation may prove necessary to increase the 

accuracy of the constants in certain inequalities and estimates in functional 

analysis; applications of this sort occur not only in analysis but also in 

the theory of numbers. 

Finally, machines may be used for testing the correctness of formulas 

of mathematical logic, and since many mathematical propositions and 

proofs can be written by means of the symbols of mathematical logic, 

it becomes theoretically possible to test on high-speed machines the 

logical correctness of certain mathematical deductions. 

As for mechanics and physics, we must first of all emphasize the vast 

increase in the application of mathematics in these sciences. Up to the 

present time the application of mathematics to concrete problems of 

mathematical physics was restricted by the enormous volume and com¬ 

plicated character of the necessary computations. In the problems arising 

in actual practice, this volume was usually such that the computation 

for one problem required several months and in some cases even several 

years of computational work. Thus, in spite of the fact that general 

mathematical formulations of many problems were known in mechanics 

and theoretical physics, and methods of their solution had been worked 

out in theory, in actual fact mathematical solutions, exact or numerical, 

had been obtained only for a few idealized and highly simplified cases, 

such as plane or axially symmetric problems, especially simple boundaries, 

or an airplane wing of infinite length. 

As a result the mathematical solutions were used not so much for 

finding the necessary numerical values as for a qualitative and tentative 

investigation of the problem, which in practice had to be supplemented 

by costly experiments. 

On the other hand, the application of new computing methods opens 

up the possibility of large-scale solutions of problems of mechanics and 

physics with all their actual complications (space problems, problems 

with complicated boundary contours, and nonlinear partial differential 

equations). 

Of course, the actual carrying out of this possibility requires further 

development of the methods of numerical analysis and of machine 

solution for these problems. However, the practicability of treating such 

problems in this way has been strikingly demonstrated by successful 

experience with solution on high-speed machines of systems of partial 

differential equations in meteorology, in gas dynamics, in the equations 

of friable materials, and in other questions. 

The application of theoretical mathematical analysis to problems of 
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mechanics and physics with a close approximation to the actual physical 

problems and the increase in rapidity and flexibility resulting from the 

use of high-speed machines has made it possible in many cases to replace 

physical experiments by mathematical ones. This possibility will lead to 

further improvement in the methods of investigating problems in physics 

and mechanics and will increase the role played in them by theoretical 

and computational methods. 

The significance of electronic machines for technology and industry. 

The rapidity and effectiveness of numerical solutions of problems of 

mathematical analysis also allow us to make much greater use in the 

various branches of technology (structural mechanics, electrical engi¬ 

neering and radiotechnology, the exploitation of water power, and so 

forth) of theoretical methods and consequently to produce much more 

accurate and practical results. It is now possible to apply mathematical 

analysis to many technical problems where it has not been used before. 

In addition to the numerical solution of problems of mathematical 

analysis encountered in technology, a completely different application of 

mathematical machines to technology has been discovered. It will be 

possible to apply mathematical machines, for example in technical 

planning, to the choice of various possibilities for the construction or 

distribution of various objects. In questions of the organization of an 

industry many solutions are possible to the problem of distributing the 

various tasks and determining their proper sequence. The choice of the 

best, the most productive, and the most economical solution presents 

great difficulty. Here also one may find applications of machines; if it is 

possible to program a systematic examination of various solutions that 

takes account of the features of interest to us, then with the help of the 

machines we may compare several hundred thousand variants, which 

would be impossible by usual methods. 

In particular, a series of relay-contact circuits allows us to analyze and 

verify these solutions by the methods of mathematical logic, which may be 

carried out on high-speed machines. In this way it is possible to select 

a set of such variants on the basis of any desired criteria and then to 

choose the best one among this selected set. 

Of great promise is the use of machines in the automatic control of 

industry, if such machines are used in conjuction with servomechanisms 

and transmission devices. For example, if geometric data concerning a 

manufactured article are introduced into the machine, together with a 

specific program for the purpose, it will determine and transmit parameters 

that will govern the motion of a power press and make necessary changes 

in the article. Because of its high speed, the same electronic machine 
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may be used for simultaneous control of the work of several presses. 

It is also easy to see the significance of such machines for automatic 

guidance of moving objects, for example interplanetary rocket projectiles, 

since the guidance program can take into account not only the data 

originally introduced but also the changes in position indicated by various 

recording devices. 

In this way, the construction and analysis of computing machines and 

the possibilities of their application present a wide field of activity for 

mathematicians. The use of mathematical machines in the coming years 

will undoubtedly play a great role in the development of our technology 

and culture. 
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